论文阅读《Privacy-Preserving Data Processing with Flexible Access Control》

写给读者

2020年的上半年由于疫情的缘故在家里蹲完了,我的研一生活也即将要过去。下半年开启了,希望自己可以不负时光,多读读论文,潜心学术。以后打算在博客中分享一些我读的论文,虽然能力有限,但也希望能用通俗易懂的方式描述。

论文来源

信息安全期刊:《IEEE Transactions on Dependable and Secure Computing》

下载链接:IEEE Xplore

论文概要

关键词

同态加密、隐私保护、数据共享、基于属性的加密

提出挑战

云计算蓬勃发展,用户的数据被上传云端,但为了保护用户隐私,云端的数据不得不加密存储。但加密的方式也有弊端,比如:

  • 传统加密方式(AES、DES)严重的限制了对数据进行操作,即使是使用同态加密,也有一定的局限性。
  • 现有的同态加密都是针对单用户的,当多个用户请求相同的结果,依然需要依次为每个用户执行计算,造成了计算资源浪费。

为了解决以上挑战,作者提出了一种灵活访问控制下的保密数据处理

解决方案

本文中提出的系统包含了五个实体,如下:

  • 数据服务提供商(DSP)
  • 计算中心(CP)
  • 数据提供者(DPs)
  • 数据请求者(DRs)
  • 权威机构

DPs将他们的个人数据以密文方式存储在DSP。然后DSP与CP合作针对用户数据做基本的处理。除此以外DSP和CP还一起针对数据处理的结果执行访问控制。只有那些满足特定规则的DRs才可以使用权威机构颁布的密钥来访问最终结果。

系统模型

在这样的系统中,权威机构被认为是可信的,不会与其它四个实体串通。而DSP和CP因为利益冲突也不会互相串通。

数据处理流程如下:

  • 建立系统:权威机构确立同态重加密方案和基于属性的加密方案,CP和DSP进行密钥协商,并将公钥发布给用户。
  • 数据上传:DPs加密自己的数据,并上传给DSP 。
  • 数据准备:DSP收到数据后进行二次加密
  • 数据处理:CP收到DSP二次加密的数据,进行计算得结果
  • 额外处理:DSP还需要对CP计算后的结果进行解密
  • 数据访问:权威中心向特定的具有权限的DR发布数据访问密钥,然后他们就可以凭密钥获取计算结果了。

整个过程中用到了两套加密算法,一个是Paillier的部分同态加密,用来在加密数据上实现基本的处理操作,即加法、减法、乘法、获取符号、比较、等值判断等。另一个是基于属性的加密,用来支持灵活的访问控制。整个系统的数据处理流程如下图。

数据处理流程

方案评估

安全性证明:本文首先证明了无论攻击者以DR的身份攻击多少次,都无法获得原始数据

性能评估:分析了算法的复杂度和通信开销,通过与现有工作进行对比实验,证明了系统的优势

我的思考

这篇论文我只是匆匆地泛读了一下,粗浅地了解了一下作者的工作,其中有不明白的一点就是为什么DSP和CP不会串通起来窃取用户的原始数据,仅仅是因为利益冲突吗?还是说加密算法本身也有约束?

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Privacy-preserving machine learning is becoming increasingly important in today's world where data privacy is a major concern. Federated learning and secure aggregation are two techniques that can be used to achieve privacy-preserving machine learning. Federated learning is a technique where the machine learning model is trained on data that is distributed across multiple devices or servers. In this technique, the model is sent to the devices or servers, and the devices or servers perform the training locally on their own data. The trained model updates are then sent back to a central server, where they are aggregated to create a new version of the model. The key advantage of federated learning is that the data remains on the devices or servers, which helps to protect the privacy of the data. Secure aggregation is a technique that can be used to protect the privacy of the model updates that are sent to the central server. In this technique, the updates are encrypted before they are sent to the central server. The central server then performs the aggregation operation on the encrypted updates, and the result is sent back to the devices or servers. The devices or servers can then decrypt the result to obtain the updated model. By combining federated learning and secure aggregation, it is possible to achieve privacy-preserving machine learning. This approach allows for the training of machine learning models on sensitive data while protecting the privacy of the data and the model updates.

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值