【pytorch函数笔记】torch.sum()、torch.unsqueeze()

1.torch.sum

torch.sum(imgs, dim=0) # 按列求和

torch.sum(imgs, dim=1)  # 按行求和

imgs = torch.Tensor([i for i in zip( range(10), range(10))])
print(imgs)
s1=torch.sum(imgs, dim=0) # 按列求和
s2=torch.sum(imgs, dim=1)  # 按行求和
print(s1)
print(s2)

2.torch.unsqueeze

将每个图像张量的维度扩展,即在每个图像张量的最前面添加一个额外维度,以匹配模型的输入形状要求。

 torch.unsqueeze(i, dim=0)  # 按dim=0的维度都变为tensor类型。

imgs = torch.Tensor([i for i in zip( range(10), range(10))])
print(imgs)
print(imgs.shape)
imgs = [torch.unsqueeze(i, dim=0) for i in imgs]
print(imgs)
print(imgs[0].shape)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Catherinemin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值