1.torch.sum
torch.sum(imgs, dim=0) # 按列求和
torch.sum(imgs, dim=1) # 按行求和
imgs = torch.Tensor([i for i in zip( range(10), range(10))])
print(imgs)
s1=torch.sum(imgs, dim=0) # 按列求和
s2=torch.sum(imgs, dim=1) # 按行求和
print(s1)
print(s2)
2.torch.unsqueeze
将每个图像张量的维度扩展,即在每个图像张量的最前面添加一个额外维度,以匹配模型的输入形状要求。
torch.unsqueeze(i, dim=0) # 按dim=0的维度都变为tensor类型。
imgs = torch.Tensor([i for i in zip( range(10), range(10))])
print(imgs)
print(imgs.shape)
imgs = [torch.unsqueeze(i, dim=0) for i in imgs]
print(imgs)
print(imgs[0].shape)