【pytorch函数笔记】torch中三种sigmoid使用方法

参考:https://blog.csdn.net/weixin_44020179/article/details/117671227

 见上篇:torch.nn.Sigmod

 关于下面三种sigmoid的使用方法

  • torch.sigmoid()
  • torch.nn.functional.sigmoid()
  • torch.nn.Sigmoid()

 

先来看看官方文档怎么说的 

 1.torch.nn.functional.sigmoid()

2.torch.nn.Sigmoid()

3. torch.sigmoid()

 可以看到都是公式

 也就是将值映射到0-1之间。

相同点
  • 都是将值映射到0-1之间,没用区别
不同点
  1. 所属类型不同
    方法:torch.sigmoid() 和torch.nn.funtional.sigmoid()
    :torch.Sigmoid
  2. 使用方法不同
    两个方法函数直接传输向量就行,而类需要先定义一个类,然后再通过调用类本身的__call__函数去使用。
import torch
import torch.nn.functional as F
from torch import nn

a = torch.tensor([1,2,3])

print(torch.sigmoid(a))
print(F.sigmoid(a))

b = nn.Sigmoid()
print(b(a))

 结果一样。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值