使用yolov3训练自己的数据集

本文详细介绍了如何使用YOLOv3训练自己的数据集,包括使用LabelImage进行图像标注,生成train.txt和val.txt,创建类别文件classes.names,配置train_cfg1.data和train_cfg2.cfg,下载预训练权重,以及训练和测试模型的全过程。
摘要由CSDN通过智能技术生成

使用yolov3训练自己的数据集

1、给自己的数据集做标签(train_imgaes和val_images)

建议使用LabelImage给数据集标框。为了方便大家的下载,这里提供LabelIamge的可执行文件下载地址:

[百度网盘](https://pan.baidu.com/s/1Tp4S6vJbVfld7efTtl0CXA) 提取码:aihc

解压之后里面有一个labelImage.exe,打开即可对数据集标框。

首先点击opendir,选择要打标签的数据集的路径,然后需要选着YOLO模式,这个模式把标签生成txt文件,yolov3需要的就是txt类型的文件。如果是默认的PscalVOC模式,会生成xml格式的标签。

在这里插入图片描述

然后点击Create RectBox标框,然后save,再下一张。

完成之后是这样的:

在这里插入图片描述

一个txt文件中可能有多行,这取决于你一张图片标了几个框。以dog.txt为例,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值