数据结构:栈、队列、数组 详解

知识框架

在这里插入图片描述

一、栈

1、栈的基本概念

1.1 栈的定义

栈(Stack):是只允许在一端进行插入或删除的线性表。首先栈是一种线性表,但限定这种线性表只能在某一端进行插入和删除操作。
在这里插入图片描述

栈顶(Top):线性表允许进行插入删除的那一端。
栈底(Bottom):固定的,不允许进行插入和删除的另一端。
空栈:不含任何元素的空表。

栈又称为后进先出(Last In First Out)的线性表,简称LIFO结构

1.2 栈的常见基本操作

InitStack(&S):初始化一个空栈S。
StackEmpty(S):判断一个栈是否为空,若栈为空则返回true,否则返回false。
Push(&S, x):进栈(栈的插入操作),若栈S未满,则将x加入使之成为新栈顶。
Pop(&S, &x):出栈(栈的删除操作),若栈S非空,则弹出栈顶元素,并用x返回。
GetTop(S, &x):读栈顶元素,若栈S非空,则用x返回栈顶元素。
DestroyStack(&S):栈销毁,并释放S占用的存储空间(“&”表示引用调用)。

2、栈的顺序存储结构

2.1 栈的顺序存储

采用顺序存储的栈称为顺序栈,它利用一组地址连续的存储单元存放自栈底到栈顶的数据元素,同时附设一个指针(top)指示当前栈顶元素的位置。
若存储栈的长度为StackSize,则栈顶位置top必须小于StackSize。当栈存在一个元素时,top等于0,因此通常把空栈的判断条件定位top等于-1。

若现在有一个栈,StackSize是5,则栈的普通情况、空栈、满栈的情况分别如下图所示:
在这里插入图片描述

2.2 顺序栈的基本算法

void InitStack(SqStack *S){
    S->top = -1;    //初始化栈顶指针
}



bool StackEmpty(SqStack S){
    if(S.top == -1){    
        return true;    //栈空
    }else{  
        return false;   //不空
    }
}



/*插入元素e为新的栈顶元素*/
Status Push(SqStack *S, ElemType e){
    //满栈
    if(S->top == MAXSIZE-1){
        return ERROR;
    }
    S->top++;   //栈顶指针增加一
    S->data[S->top] = e;    //将新插入元素赋值给栈顶空间
    return OK;
}



/*若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR*/
Status Pop(SqStack *S, ElemType *e){
    if(S->top == -1){
        return ERROR;
    }
    *e = S->data[S->top];   //将要删除的栈顶元素赋值给e
    S->top--;   //栈顶指针减一
    return OK;
}



/*读栈顶元素*/
Status GetTop(SqStack S, ElemType *e){
    if(S->top == -1){   //栈空
        return ERROR;
    }
    *e = S->data[S->top];   //记录栈顶元素
    return OK;
}

3、共享栈(两栈共享空间)

3.1 共享栈概念

利用栈底位置相对不变的特征,可让两个顺序栈共享一个一维数组空间,将两个栈的栈底分别设置在共享空间的两端,两个栈顶向共享空间的中间延伸,如下图所示:
在这里插入图片描述
两个栈的栈顶指针都指向栈顶元素,top0=-1时0号栈为空,top1=MaxSize时1号栈为空;仅当两个栈顶指针相邻(top0+1=top1)时,判断为栈满。当0号栈进栈时top0先加1再赋值,1号栈进栈时top1先减一再赋值出栈时则刚好相反。

3.2 共享栈的空间结构

代码如下:

/*两栈共享空间结构*/
#define MAXSIZE 50  //定义栈中元素的最大个数
typedef int ElemType;   //ElemType的类型根据实际情况而定,这里假定为int
/*两栈共享空间结构*/
typedef struct{
	ElemType data[MAXSIZE];
	int top0;	//栈0栈顶指针
	int top1;	//栈1栈顶指针
}SqDoubleStack;

3.3 共享栈进栈

对于两栈共享空间的push方法,我们除了要插入元素值参数外,还需要有一个判断是栈0还是栈1的栈号参数stackNumber。
共享栈进栈的代码如下:

/*插入元素e为新的栈顶元素*/
Status Push(SqDoubleStack *S, Elemtype e, int stackNumber){
    if(S->top0+1 == S->top1){   //栈满
        return ERROR;
    }
    if(stackNumber == 0){   //栈0有元素进栈
        S->data[++S->top0] = e; //若栈0则先top0+1后给数组元素赋值
    }else if(satckNumber == 1){ //栈1有元素进栈
        S->data[--S->top1] = e; //若栈1则先top1-1后给数组元素赋值
    }
    return OK;
}

3.4 共享栈出栈

代码如下:

/*若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR*/
Status Pop(SqDoubleStack *S, ElemType *e, int stackNumber){
    if(stackNumber == 0){
        if(S->top0 == -1){
            return ERROR;   //说明栈0已经是空栈,溢出
        }
        *e = S->data[S->top0--]; //将栈0的栈顶元素出栈,随后栈顶指针减1
    }else if(stackNumber == 1){
        if(S->top1 == MAXSIZE){
            return ERROR;   //说明栈1是空栈,溢出
        }
        *e = S->data[S->top1++];    //将栈1的栈顶元素出栈,随后栈顶指针加1
    }
    return OK;
}

4、栈的链式存储结构

4.1 链栈

采用链式存储的栈称为链栈,链栈的优点是便于多个栈共享存储空间和提高其效率,且不存在栈满上溢的情况。通常采用单链表实现,并规定所有操作都是在单链表的表头进行的。这里规定链栈没有头节点,Lhead指向栈顶元素,如下图所示。在这里插入图片描述
对于空栈来说,链表原定义是头指针指向空,那么链栈的空其实就是top=NULL的时候。

链栈的结构代码如下:

/*栈的链式存储结构*/
/*构造节点*/
typedef struct StackNode{
    ElemType data;
    struct StackNode *next;
}StackNode, *LinkStackPrt;
/*构造链栈*/
typedef struct LinkStack{
    LinkStackPrt top;
    int count;
}LinkStack;

4.2 链栈的基本算法

4.2.1 链栈的进栈

对于链栈的进栈push操作,假设元素值为e的新节点是s,top为栈顶指针,示意图如下:在这里插入图片描述
代码如下:

/*插入元素e为新的栈顶元素*/
Status Push(LinkStack *S, ElemType e){
    LinkStackPrt p = (LinkStackPrt)malloc(sizeof(StackNode));
    p->data = e;
    p->next = S->top;    //把当前的栈顶元素赋值给新节点的直接后继
    S->top = p; //将新的结点S赋值给栈顶指针
    S->count++;
    return OK;
}

4.2.2 链栈的出栈

链栈的出栈pop操作,也是很简单的三句操作。假设变量p用来存储要删除的栈顶结点,将栈顶指针下移以为,最后释放p即可,如下图所示:
在这里插入图片描述

/*若栈不空,则删除S的栈顶元素,用e返回其值,并返回OK;否则返回ERROR*/
Status Pop(LinkStack *S, ElemType *e){
    LinkStackPtr p;
    if(StackEmpty(*S)){
        return ERROR;
    }
    *e = S->top->data;
    p = S->top; //将栈顶结点赋值给p
    S->top = S->top->next;  //使得栈顶指针下移一位,指向后一结点
    free(p);    //释放结点p
    S->count--;
    return OK;
}

4.3 性能分析

链栈的进栈push和出栈pop操作都很简单,时间复杂度均为O(1)。
对比一下顺序栈与链栈,它们在时间复杂度上是一样的,均为O(1)。对于空间性能,顺序栈需要事先确定一个固定的长度,可能会存在内存空间浪费的问题,但它的优势是存取时定位很方便,而链栈则要求每个元素都有指针域,这同时也增加了一些内存开销,但对于栈的长度无限制。所以它们的区别和线性表中讨论的一样,如果栈的使用过程中元素变化不可预料,有时很小,有时非常大,那么最好是用链栈,反之,如果它的变化在可控范围内,建议使用顺序栈会更好一些。

5、栈的应用——递归

5.1 递归的定义

递归是一种重要的程序设计方法。简单地说,若在一个函数、过程或数据结构的定义中又应用了它自身,则这个函数、过程或数据结构称为是递归定义的,简称递归。
它通常把一个大型的复杂问题层层转化为一个与原问题相似的规模较小的问题来求解,递归策略只需少量的代码就可以描述岀解题过程所需要的多次重复计算,大大减少了程序的代码量但在通常情况下,它的效率并不是太高。

5.2 斐波那契数列

在解释斐波那契数列之前,我们想看经典的兔子繁殖的问题:
说如果兔子在出生两个月后,就有繁殖能力,一对兔子每个月能生出一对小兔子 来。假设所有兔都不死,那么一年以后可以繁殖多少对兔子呢?

  • 第一个月初有一对刚诞生的兔子
  • 第二个月之后(第三个月初)
  • 它们可以生育 每月每对可生育的兔子会诞生下一对新兔子
  • 兔子永不死去

我们拿新出生的一对小兔子分析一下:第一个月小兔子没有繁殖能力,所以还是一对;两个月后,生下一对小兔子数共有两对;三个月以后,老兔子又生下一对,因为小兔子还没有繁殖能力,所以一共是三对…依次类推得出这样一个图:在这里插入图片描述
从这个图可以看出,斐波那契数列数列有一个明显的特点,即:前面两项之和,构成了后一项。
如果用数学函数定义斐波那契数列,那就是:
在这里插入图片描述
代码如下:

/*斐波那契数列的实现*/
int Fib(int n){
    if(n == 0){
        return 0;   //边界条件
    }else if(n == 1){
        return 1;	//边界条件
    }else{
        return Fib(n-1) + Fib(n-2); //递归表达式
    }
}

必须注意递归模型不能是循环定义的,其必须满足下面的两个条件

  • 递归表达式(递归体)
  • 边界条件(递归出口)
    递归的精髓在于能否将原始问题转换为属性相同但规模较小的问题
    在递归调用的过程中,系统为每一层的返回点、局部变量、传入实参等开辟了递归工作栈来进行数据存储,递归次数过多容易造成栈溢出等。而其效率不高的原因是递归调用过程中包含很多重复的计算。下面以n=5为例,列出递归调用执行过程,如图所示:在这里插入图片描述

5.3 四则运算表达式求值

5.3.1 后缀表达式计算结果

表达式求值是程序设计语言编译中一个最基本的问题,它的实现是栈应用的一个典型范例。中缀表达式不仅依赖运算符的优先级,而且还要处理括号。后缀表达式的运算符在操作数后面,在后缀表达式中已考虑了运算符的优先级,没有括号,只有操作数和运算符。例如中缀表达式A + B ∗ ( C − D ) − E / F A+B*(C-D)-E/FA+B∗(C−D)−E/F所对应的后缀表达式为A B C D − ∗ + E F / − ABCD-*+EF/-ABCD−∗+EF/−。

后缀表达式计算规则:从左到右遍历表达式的每个数字和符号,遇到是数字就进栈,遇到是符号,就将处于栈顶两个数字出栈,进项运算,运算结果进栈,一直到最终获得结果。

后缀表达式A B C D − ∗ + E F / − ABCD-+EF/-ABCD−∗+EF/−求值的过程需要12步,如下表所示:
在这里插入图片描述
可将后缀表达式与原运算式对应的表达式树(用来表示算术表达式的二元树)的后序遍历进行比较,可以发现它们有异曲同工之妙。
如下图则是A + B ∗ ( C − D ) − E / F A+B
(C-D)-E/FA+B∗(C−D)−E/F对应的表达式,它的后序遍历即是表达式A B C D − ∗ + E F / − ABCD-*+EF/-ABCD−∗+EF/−。

在这里插入图片描述

5.3.2 中缀表达式转后缀表达式

我们把平时所用的标准四则运算表达式,即a + b − a ∗ ( ( c + d ) / e − f ) + g a+b-a*((c+d)/e-f)+ga+b−a∗((c+d)/e−f)+g叫做中缀
表达式。因为所有的运算符号都在两数字的中间,现在我们的问题就是中缀到后缀的转化。

规则:从左到右遍历中缀表达式的每个数字和符号,若是数字就输出,即成为后缀表达式的一部分;若是符号,则判断其与栈顶符号的优先级,是右括号或优先级低于栈顶符号(乘除优先加减)则栈顶元素依次出栈并输出,并将当前符号进栈,一直到最终输出后缀表达式为止。

例:将中缀表达式a + b − a ∗ ( ( c + d ) / e − f ) + g a+b-a*((c+d)/e-f)+ga+b−a∗((c+d)/e−f)+g转化为相应的后缀表达式。

分析:需要根据操作符

的优先级来进行栈的变化,我们用icp来表示当前扫描到的运算符ch的优先级,该运算符进栈后的优先级为isp,则运算符的优先级如下表所示[isp是栈内优先( in stack priority)数,icp是栈外优先( in coming priority)数]。
在这里插入图片描述
我们在表达式后面加上符号‘#’,表示表达式结束。具体转换过程如下:
在这里插入图片描述
即相应的后缀表达式为a b + a c d + e / f − ∗ − g + ab+acd+e/f-*-g+ab+acd+e/f−∗−g+。


二、队列

1、队列的基本概念

1.1 队列的定义

队列(queue)是只允许在一端进行插入操作,而在另一端进行删除操作的线性表。
队列是一种先进先出(First In First Out)的线性表,简称FIFO。允许插入的一端称为队尾,允许删除的一端称为队头。
在这里插入图片描述
队头(Front):允许删除的一端,又称队首。
队尾(Rear):允许插入的一端。
空队列:不包含任何元素的空表。

1.2 队列的常见基本操作

InitQueue(&Q):初始化队列,构造一个空队列Q。
QueueEmpty(Q):判队列空,若队列Q为空返回true,否则返回false。
EnQueue(&Q, x):入队,若队列Q未满,将x加入,使之成为新的队尾。
DeQueue(&Q, &x):出队,若队列Q非空,删除队头元素,并用x返回。
GetHead(Q, &x):读队头元素,若队列Q非空,则将队头元素赋值给x。

2、队列的顺序存储结构

队列的顺序实现是指分配一块连续的存储单元存放队列中的元素,并附设两个指针:队头指针 front指向队头元素,队尾指针 rear 指向队尾元素的下一个位置。

2.1 顺序队列

初始状态(队空条件):Q->front == Q->rear == 0。
进队操作:队不满时,先送值到队尾元素,再将队尾指针加1。
出队操作:队不空时,先取队头元素值,再将队头指针加1。

队列的顺序存储类型可描述为:
在这里插入图片描述
如图d,队列出现“上溢出”,然而却又不是真正的溢出,所以是一种“假溢出”。

2.2 循环队列

解决假溢出的方法就是后面满了,就再从头开始,也就是头尾相接的循环。我们把队列的这种头尾相接的顺序存储结构称为循环队列。
当队首指针Q->front = MAXSIZE-1后,再前进一个位置就自动到0,这可以利用除法取余运算(%)来实现。

初始时:Q->front = Q->rear=0。
队首指针进1:Q->front = (Q->front + 1) % MAXSIZE。
队尾指针进1:Q->rear = (Q->rear + 1) % MAXSIZE。
队列长度:(Q->rear - Q->front + MAXSIZE) % MAXSIZE。
出队入队时,指针都按照顺时针方向前进1,如下图所示:
在这里插入图片描述

那么,循环队列队空和队满的判断条件是什么呢?
显然,队空的条件是 Q->front == Q->rear 。若入队元素的速度快于出队元素的速度,则队尾指针很快就会赶上队首指针,如图( d1 )所示,此时可以看出队满时也有 Q ->front == Q -> rear 。
为了区分队空还是队满的情况,有三种处理方式:
(1)牺牲一个单元来区分队空和队满,入队时少用一个队列单元,这是种较为普遍的做法,约定以“队头指针在队尾指针的下一位置作为队满的标志”.

  • 队满条件: (Q->rear + 1)%Maxsize == Q->front
  • 队空条件: Q->front == Q->rear
  • 队列中元素的个数: (Q->rear - Q ->front + Maxsize)% Maxsize
    (2)类型中增设表示元素个数的数据成员。这样,队空的条件为 Q->size == O ;队满的条件为 Q->size == Maxsize 。这两种情况都有 Q->front == Q->rear
    (3)类型中增设tag 数据成员,以区分是队满还是队空。tag 等于0时,若因删除导致 Q->front == Q->rear ,则为队空;tag 等于 1 时,若因插入导致 Q ->front == Q->rear ,则为队满。

2.3 循环队列常见基本算法

typedef int ElemType;   //ElemType的类型根据实际情况而定,这里假定为int
#define MAXSIZE 50  //定义元素的最大个数
/*循环队列的顺序存储结构*/
typedef struct{
    ElemType data[MAXSIZE];
    int front;  //头指针
    int rear;   //尾指针,若队列不空,指向队列尾元素的下一个位置
}SqQueue;



/*初始化一个空队列Q*/
Status InitQueue(SqQueue *Q){
    Q->front = 0;
    Q->rear = 0;
    return OK;
}



/*判队空*/
bool isEmpty(SqQueue Q){
    if(Q.rear == Q.front){
        return true;
    }else{
        return false;
    }
}



/*返回Q的元素个数,也就是队列的当前长度*/
int QueueLength(SqQueue Q){
    return (Q.rear - Q.front + MAXSIZE) % MAXSIZE;
}



/*返回Q的元素个数,也就是队列的当前长度*/
int QueueLength(SqQueue Q){
    return (Q.rear - Q.front + MAXSIZE) % MAXSIZE;
}



/*若队列未满,则插入元素e为Q新的队尾元素*/
Status EnQueue(SqQueue *Q, ElemType e){
    if((Q->rear + 1) % MAXSIZE == Q->front){
        return ERROR;   //队满
    }
    Q->data[Q->rear] = e;   //将元素e赋值给队尾
    Q->rear = (Q->rear + 1) % MAXSIZE;  //rear指针向后移一位置,若到最后则转到数组头部
    return OK;
}


/*若队列不空,则删除Q中队头元素,用e返回其值*/
Status DeQueue(SqQueue *Q, ElemType *e){
    if(isEmpty(Q)){
        return REEOR;   //队列空的判断
    }
    *e = Q->data[Q->front]; //将队头元素赋值给e
    Q->front = (Q->front + 1) % MAXSIZE;    //front指针向后移一位置,若到最后则转到数组头部
}

3、队列的链式存储结构

3.1 链队列

队列的链式存储结构表示为链队列,它实际上是一个同时带有队头指针和队尾指针的单链表,只不过它只能尾进头出而已。
在这里插入图片描述
空队列时,front和real都指向头结点。在这里插入图片描述

3.2 链队列常见基本算法

3.2.1 链队列存储类型
/*链式队列结点*/
typedef struct {
	ElemType data;
	struct LinkNode *next;
}LinkNode;
/*链式队列*/
typedef struct{
	LinkNode *front, *rear;	//队列的队头和队尾指针
}LinkQueue;

当Q->front == NULL 并且 Q->rear == NULL 时,链队列为空。

3.2.2 链队列初始化

在这里插入图片描述

void InitQueue(LinkQueue *Q){
	Q->front = Q->rear = (LinkNode)malloc(sizeof(LinkNode));	//建立头结点
	Q->front->next = NULL;	//初始为空
}

3.2.3 链队列入队

在这里插入图片描述

Status EnQueue(LinkQueue *Q, ElemType e){
	LinkNode s = (LinkNode)malloc(sizeof(LinkNode));
	s->data = e;
	s->next = NULL;
	Q->rear->next = s;	//把拥有元素e新结点s赋值给原队尾结点的后继
	Q->rear = s;	//把当前的s设置为新的队尾结点
	return OK;
}

3.2.4 链队列出队

出队操作时,就是头结点的后继结点出队,将头结点的后继改为它后面的结点,若链表除头结点外只剩一个元素时,则需将rear指向头结点。
在这里插入图片描述

/*若队列不空,删除Q的队头元素,用e返回其值,并返回OK,否则返回ERROR*/
Status DeQueue(LinkQueue *Q, Elemtype *e){
	LinkNode p;
	if(Q->front == Q->rear){
		return ERROR;
	}
	p = Q->front->next;	//将欲删除的队头结点暂存给p
	*e = p->data;	//将欲删除的队头结点的值赋值给e
	Q->front->next = p->next;	//将原队头结点的后继赋值给头结点后继
	//若删除的队头是队尾,则删除后将rear指向头结点
	if(Q->rear == p){	
		Q->rear = Q->front;
	}
	free(p);
	return OK;
}

4、双端队列

4.1 定义

双端队列是指允许两端都可以进行入队和出队操作的队列,如下图所示。其元素的逻辑结构仍是线性结构。将队列的两端分别称为前端和后端,两端都可以入队和出队。
在这里插入图片描述
在双端队列进队时,前端进的元素排列在队列中后端进的元素的前面,后端进的元素排列在队列中前端进的元素的后面。在双端队列出队时,无论是前端还是后端出队,先出的元素排列在后出的元素的前面。

4.2 特殊的双端队列

在实际使用中,根据使用场景的不同,存在某些特殊的双端队列。

输出受限的双端队列:允许在一端进行插入和删除, 但在另一端只允许插入的双端队列称为输出受限的双端队列,如下图所示。
在这里插入图片描述
输入受限的双端队列:允许在一端进行插入和删除,但在另一端只允许删除的双端队列称为输入受限的双端队列,如下图所示。若限定双端队列从某个端点插入的元素只能从该端点删除,则该双端队列就蜕变为两个栈底相邻接的栈。
在这里插入图片描述

三、数组

1、数组和特殊矩阵

矩阵在计算机图形学、工程计算中占有举足轻重的地位。在数据结构中考虑的是如何用最小
的内存空间来存储同样的一组数据。所以,我们不研究矩阵及其运算等,而把精力放在如何将矩
阵更有效地存储在内存中,并能方便地提取矩阵中的元素。

2、数组

2.1 数组的定义

数组是由n(n≥1)个相同类型的数据元素构成的有限序列,每个数据元素称为一个数组元素,每个元素在几个线性关系中的序号称为该元素的下标,下标的的取值范围称为数组的维界。
数组与线性表的关系:数组是线性表的推广。一维数组可视为一个线性表:二维数组可视为其元素也是定长线性表的线性表,以此类推。数组一旦被定义义,其维数和维界就不再改变。
因此,除结构的初始化和销毁外,数组只会有存取元素和修改元素的操作。

2.2 数组的存储结构

大多数计算机语言都提供了数组数据类型,逻辑意义上的数组可采用计算机语言中的数组数据类型进行存储,一个数组的所有元素在内存中占用一段连续的存储空间。
以一维数组A[0…n-1]为例,其存储结构关系式为
LOC(af)=LOC(an)+ixL(0<i<n)
其中,L是每个数组元素所占的存储单元。
对于多维数组,有两种映射方法:按行优先和按列优先。以二维数组为例,按行优先存储的
基本思想是:先行后列,先存储行号较小的元素,行号相等先存储列号较小的元素。设二维数组
行下标与列下标的范围分别为[0,41]与[0,12],则存储构关系式为
LOC(az)=LOC(ano)+[ix(hə+l)+j]xL
例如,对于数组4[2][3],它按行优先方式在内存中的存储形式如图
在这里插入图片描述
当以列优先方式存储时,得出存储结构关系式为
LOC(ay)=LOC(aoo)+[jx(h+1)+i]xL
例如,对于数组4[2][3],它按列优先方式在内存中的存储形式如图
在这里插入图片描述

3、特殊矩阵的压缩存储

压缩存储:指为多个值相同的元素只分配一个存储空间,对零元元素不分配存储空间。其目的是节省存储空间。
特殊矩阵:指具有许多相同矩阵元素或零元素,并且这些相同距阵元素或零元素的分布有一定规律性的矩阵。常见的特殊矩阵有对称矩阵、上(下)3三角矩阵、对角矩阵等。
特殊矩阵的压缩存储方法:找出特殊矩阵中值相同的矩阵元素的分布规律,把那些呈现规律性分布的、值相同的多个矩阵元素压缩存储到一个存储空间中。

3.1 对称矩阵

若对一个n阶矩阵4中的任意一个元素au都有au=aji(1<i,j<n),!则称其为对称矩阵其中的元素可以划分为3个部分,即上三角区、主对角线和下三角区。
元素下标之间的对应关系如下:

在这里插入图片描述
对于n阶对称矩阵,上三角区的所有元素和下三角区的对应元素相同,若仍采用二维数组存放,则会浪费几乎一半的空间,为此将n阶对称矩阵4存放在一维数组B[n(n+1)/2]中,即元素an存放在bx中。比如只存放下三角部分(含主对角)的元素。

在这里插入图片描述

3.2 三角矩阵

在这里插入图片描述
下三角矩阵中,上三角区的所有元素均为同一常量。其存储思想与对称矩阵
类似,不同之处在于存储完下三角区和主对角线上的元素之后,紧接着存储对角线上方的常量一次,故可以将n阶下三角矩阵4压缩存储B[n(n+1)/2+1]中。
元素下标之间的对应关系为:
在这里插入图片描述
上三角矩阵中,下三角区的所有元素均
为同一常量。只需存储主对角线、上三角区上的元素和下ili
角区的常量一次,可将其压缩存储在B[n(n+1)/2+1]中。
元素下标之间的对应关系为:
在这里插入图片描述

3.3 三对角矩阵

对角矩阵也称带状矩阵。对于n阶矩阵4中的任意一个元素au,当i-j>1时,有ay=0(1<i,j≤n),则称为三对角矩阵,如图3.24所示。在三对角矩阵中,所有非零元素都集中在以主对角线为中心的3条对角线的区域,其他区域的元素都为零。
三对角矩阵4也可以采用压缩存储,将3条对角线上的元素按行优先方式存放在一维数组B中,且a1,1存放于B[0]中。
在这里插入图片描述

3.4 稀疏矩阵

矩阵中非零元素的个数1,相对矩阵元素的个数s来说非常少,1即s》t的矩阵称为稀疏矩阵。
例如,一个矩阵的阶为100x100,该矩阵中只有少于100个非零零元素。
若采用常规的方法存储稀疏矩阵,则相当浪费存储空间,因此此仅存储非零元素。但通常非零元素的分布没有规律,所以仅存储非零元素的值是不够的,还要存储它所在的行和列。因此,将非零元素及其相应的行和列构成一个三元组(行标,列标,值),如图所示。然后按照某种规律存储这些三元组。稀疏矩阵压缩存储后便失去了随机存取取特性。
在这里插入图片描述
稀疏矩阵的三元组既可以采用数组存储,也可以采用十字钱连表法存储。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值