机器学习+DFT计算引领催化剂设计新趋势

对于传统催化剂设计与开发,最开始大家都是用经验试错法,或化学原理开发法,这些方法消耗了实验科学家绝大多数时间。为了进一步解释催化机理,缩短开发周期,理论化学家们开发了第一性原理计算方法及相关计算程序并广泛应用于各种催化反应研究体系中。

机器学习算法的逐渐成熟和计算资源的迅速发展,逐渐在顶刊中出现一些关于机器学习应用在材料设计中的案例。Nature在5月13号刊登了一篇文章:Accelerated discovery of CO2 electrocatalysts usingactive machine learning(DOI: 10.1038/s41586-020-2242-8),研究者通过机器学习和实验方法结合开发了一种Cu-Al催化剂,可用于高活性和选择性地将CO2电还原为C2H4。结合离散傅里叶变换,火山关系图主动机器学习优化催化剂性能,对前景的电催化剂进行了高通量筛选和预测

图1 用计算方法筛选Cu和Cu基化合物

### 机器学习催化剂设计中的方法和案例 #### 方法概述 机器学习技术可以通过构建预测模型来加速催化剂设计过程。这些模型能够基于已有的实验数据或理论计算结果,快速筛选潜在的催化材料候选物,并优化其性能参数[^1]。具体而言,监督学习算法可以用于建立输入特征(如化学成分、晶体结构等)与目标属性(如反应活性、选择性等)之间的映射关系;而无监督学习则可以帮助发现隐藏的数据模式或者聚类相似的化合物。 此外,在高通量虚拟筛选过程中,深度神经网络因其强大的表达能力被广泛采用以捕捉复杂的非线性规律[^2]。这种方法不仅减少了传统试错法所需的大量时间和成本投入,还可能揭示人类直觉难以触及的新颖机制。 #### 实际应用案例 以下是几个典型的关于利用机器学习促进催化剂开发的实际例子: 1. **过渡金属氧化物电催化剂** 科学家们已经成功运用随机森林和支持向量机等经典机器学习工具对一系列过渡金属基复合氧化物进行了全面评估。他们找到了若干种具有优异氧还原反应(ORR)特性的新材料组合方案[^3]。 2. **光合作用模拟人工树叶项目** 在此领域内,研究人员借助卷积神经网络(CNNs),实现了对于半导体表面修饰层最佳原子排列方式的有效推测工作。这极大地推动了高效太阳能燃料生产装置的研发进程[^4]。 3. **贵金属替代品搜寻行动** 面临日益增长的成本压力以及资源稀缺挑战下,某些团队尝试引入贝叶斯优化策略指导下的自动迭代流程来进行铂族元素(PGEs)-free型燃料电池触媒体系探索活动。最终获得了接近甚至超越商业标准水平的表现成果。 ```python import numpy as np from sklearn.model_selection import train_test_split from sklearn.ensemble import RandomForestRegressor # 假设X为描述符矩阵,y为目标变量比如TOF值 X, y = load_data() X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2) model = RandomForestRegressor(n_estimators=100) model.fit(X_train, y_train) score = model.score(X_test, y_test) print(f"Model R² Score on Test Set:{score}") ``` 上述代码片段展示了如何使用随机森林回归器完成简单的建模任务之一部分操作步骤示意说明而已并非完整实现版本。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

测试狗科研

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值