RuntimeError: no valid convolution algorithms available in CuDNN

这个问题的可行的一种解决方法:

刚开始有这个问题的时候,直接在百度上查的,就只找到了一种解决方法,就是让我去调小batchsize,试过之后,还是同样的问题。所以就想到可能不是代码本身的问题,因为原来如果是需要用到的显存超了的话,会显示cuda out of memery之类的错误。那么可能是我pytorch环境的问题,但是自己的水平比较差,查不出来具体环境哪里出了问题,所以用了一个本方法,那就是重新安装了pytroch和cuda,然后这个问题就得到了解决,一下是具体的代码,按照顺序来操作就可以了:

首先是卸载原来的环境:

conda uninstall pytorch
conda uninstall libtorch
pip uninstall torch

为了确保卸载的干净,还要接着执行下面的代码:

python -m ensurepip
python -m pip install --upgrade pip
pip uninstall torchvision

接着就可以重新安装环境了,可以去这个地址找对应的代码就可以了,注意下自己电脑或者是服务器的cuda版本。

我的服务器最大支持的cuda版本是11.7,所以我运行的是下面这行代码:

conda install pytorch==1.12.0 torchvision==0.13.0 torchaudio==0.12.0 cudatoolkit=11.6 -c pytorch -c conda-forge

最后等待安装,然后我的这个问题就解决了。

建议:

遇到这个问题的时候可能是GPU的显存不行,可以先调小batch size,要是没有别的办法了,可以试一下这个方法。

非常感谢这个教我重新安装pytorch环境的链接

### 回答1: 这个错误是由于CUDNN库中没有可用的卷积算法导致的。CUDNN是一个用于深度学习的GPU加速库,它提供了高效的卷积算法来加速卷积神经网络的训练和推理。如果CUDNN库中没有可用的卷积算法,那么就会出现这个错误。解决方法可以尝试更新CUDNN库或者更换其他版本的CUDNN库。 ### 回答2: 运行时错误:在cudnn中没有有效的卷积算法可用。 Cudnn是一个深度学习库。在使用Cudnn库进行计算时,可能会遇到这个错误。这个错误表示,在Cudnn库中找不到合适的卷积算法来执行所需的操作。因此,Cudnn不知道如何处理某个特定的张量或数据格式。 这个问题可能与多种因素有关。以下是可能导致这个错误的一些原因: 1. 您使用的GPU不支持Cudnn。您需要检查您使用的GPU的兼容性,并确保它支持Cudnn库。 2. 您的Cudnn库太旧了。更新您的Cudnn库可能会解决这个问题。您可以从NVIDIA官网下载最新版本的Cudnn库。 3. 您的TensorFlow版本与Cudnn版本不兼容。TensorFlow从1.3版本开始需要使用Cudnn 6.0或更高版本。如果您的Cudnn版本太低,请升级它以适配TensorFlow的要求。 4. 您的计算图有误。您需要检查您的计算图是否正确地使用了Cudnn库。可能需要重新编写一些代码来正确地使用Cudnn。 如果您遇到这个问题,请首先检查您的GPU的兼容性、Cudnn库的版本和TensorFlow版本是否正确。如果这些方面都没有问题,您可以通过检查计算图和重新编写代码来解决这个问题。如果问题仍然存在,您可以考虑使用其他的深度学习库,例如PyTorch或CNTK。 ### 回答3: runtimeerror: no valid convolution algorithms available in cudnn 是一个出现在使用深度学习框架(如tensorflow和pytorch)时的常见错误,它意味着CUDA Deep Neural Network Library (cuDNN)找不到可用的卷积算法。 cuDNN是一个针对 GPU 的深度学习库,它使用高效的卷积算法来加速训练和预测过程。但是,在某些情况下,它可能无法找到可用的卷积算法。 此错误可能有多种原因,最常见的是cuDNN版本与cuda版本不兼容,可以尝试更新cuDNN以解决该问题。另一种可能是GPU显存不足,可以尝试减少batch size或调整模型结构以减少显存使用量。 另一种可能是硬件上出现问题,例如显卡驱动程序未正确安装或显卡没有足够的PCI Express带宽。可以尝试重新安装驱动程序或更换显卡以解决该问题。 最后,出错的信息通常会给出更具体的错误信息。如果这些方案无法解决该错误,可以尝试查看更具体的错误信息以帮助找到问题的根本原因。 总之,该错误可能有多种原因。要解决此错误,可以尝试更新cuDNN、增加显存、修复硬件问题或查看更具体的错误信息,以便快速解决问题。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值