去噪论文阅读(一):Noise2Noise

引言:

       Noise2Noise是第一篇使用自监督方法进行去噪任务的论文。在此之前,去噪方法主要有两种:基于统计学关系进行整体去噪的方法,和使用干净-噪声图像对进行有监督学习的方法。然而,这两种方法在去噪质量和适用范围上都有一定的局限性。Noise2Noise采用了一种创新的方法,即利用同一场景下的不同噪声图像对来实现去噪。虽然相较于有监督方法,去噪质量可能有所下降,但这种方法大大扩展了去噪技术的应用场景。

理论方法:

       在介绍Noise2Nose前需要先说明该方法的前提假设:

       1.噪声类型为高斯噪声。

       2.噪声均值为0。

       在神经网络学习过程中,网络学习的倾向都是使得网络损失最小化,在我们有清晰的目标图像 𝑦𝑖 以及他的观测到的含噪声图像x_{i}时,利用神经网络去拟合这样一个回归模型,可以看做是优化这样一个loss:

        而在很多场景中,干净-噪声图像对难以获取,那么就需要思考如何只利用噪声图像进行去噪。Noise2Noise 利用的是一种自监督学习方法。在这种方法中,模型并不需要干净的参考图像,而是直接在带噪声的图像上进行训练。通过学习从一个带噪声图像到另一个带噪声图像的映射,模型能够自动推断并去除噪声。训练过程中需要的前提是对于同一图像,存在多次独立采样,每次采样的噪声都是独立且分布相同的。这样,在训练过程中,模型通过多次观测同一图像不同噪声实例,可以学习到噪声的统计特性,从而更好地进行去噪。Noise2Noise 假设噪声的期望值为零。这意味着在多个噪声实例中,噪声值的平均值趋近于零。在这种情况下,即使单个噪声实例中含有噪声,但在多个实例中,噪声的平均影响可以抵消,进而逼近干净图像的真实值。而N2N最主要的就是提出了一个优化函数:

       Noise2noise所使用的主要思想是Noise2clean中就是使loss最小化,那在两幅来自同一场景的均值都为0的图片,网络倾向输出期望,最终的输出就为图片信号本身。

思考:

       优点:
       1.无需Noise-Clean对:只需两个带噪声的图像对即可进行训练,增加了方法的实用性,尤其在无法获取干净图像的情况下。
       2.数据获取简便:减少了对干净图像的依赖,只需获取同一场景的多次独立观测,降低了数据收集的难度和成本。
       缺点:
       1.噪声均值假设:需要噪声均值为0,这在现实生活中难以满足,导致泛化性不足。实际噪声往往复杂且具有偏差,不完全符合零均值的假设。
       2.损失函数依赖性:需要根据噪声类型选择不同的损失函数,增加了模型设计的复杂性。
实际效果和思考:
       在复现代码运行后,实际上n2n的去噪效果并不理想,甚至连DnCNN的去噪效果都比N2N好。这说明该方法主要解决的是训练时数据较难获取的问题,而在去噪效果上并未显著超越现有方法。尽管N2N使用的是同一场景下的不同噪声图像对,减少了数据获取难度,但仍未达到真正的自监督(即只需要一张含噪图片即可去噪)。未来的研究工作可以在这一方向上进行深入思考和探索。
       现实中的噪声可能并不符合零均值假设,且具有复杂的统计特性。N2N在这种情况下效果有限,需要更复杂的模型来适应多样化的噪声分布。
       总之,Noise2Noise在解决训练数据难以获取的问题上具有明显优势,但其去噪效果受到噪声假设和损失函数选择的限制。未来研究可以探索如何结合其他方法、改进噪声建模、增强数据处理能力,以提升其在实际应用中的效果。

  • 7
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值