简单的 Tensorflow 开发环境分为 GPU和CPU两种版本,安装上的不同之处只是最后使用 pip 工具安装的时候命令不同。
因为GPU版本的使用GPU进行运算,对图像的处理速度更快,目前只支持NVIDIA的显卡。
一、安装CUDA框架和cuDNN库(如果确定不使用GPU,可以跳过此步)
参照官方文档安装即可:官方文档
关于CUDA和cuDNN的关系:https://www.jianshu.com/p/622f47f94784
大致过程如下:
1、下载CUDA框架,安装。(按照到默认位置即可,自定义的位置安装完成后,重启电脑,安装文件会消失(Win10))。
2、将cuDNN的三个文件拷贝至CUDA的安装目录中即可。
注意:上述过程在官方文档中有详细说明。需要注意cuDNN和CUDA库的匹配问题,即安装的cuDNN库需要和CUDA框架匹配。具体的方式都在官方文档中有说明。
二、安装Anaconda
从Anaconda官网下载所需版本的即可,安装时需要勾选注册环境变量。其余的默认即可,可以自定义安装位置。
三、查看安装情况
在启动栏中打开 Anaconda Prompt(Anaconda)
1、查看CUDA框架的安装情况
输入如下命令,结果大致如下即可:
nvcc --version
2、查看Anaconda的安装情况
输入如下命令,结果大致如下即可:
anaconda --version
3、查看Anaconda安装的python版本
输入如下命令,结果大致如下即可:
python
四、使用conda创建虚拟环境
Conda 是一个开源的软件包管理系统和环境管理系统,用于安装多个版本的软件包及其依赖关系,并在它们之间轻松切换。
Conda 是为python程序创建的,适用于 Linux,OS X 和Windows,也可以打包和分发其他软件,是最流行的 Python 环境管理工具 。
参考:https://www.cnblogs.com/ssxblog/p/10666751.html
https://www.cnblogs.com/ljysy/p/10660885.html
1、添加清华大学的源,加快下载速度。(源也可以自己更换)
conda config --addchannels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --setshow_channel_urls yes
2、创建虚拟环境
conda create --name Virtual_Environment_Name python=3.7.4
// --name 可以替换为 -n
// Virtual_Environment_Name : 是新建的python虚拟环境名称,可以自定义
// 3.7.4 : 虚拟环境中的python版本号,不一定要使用和Anaconda安装时一样python的版本号,根据自己的需
// 要自定义即可
3、激活虚拟环境
conda activate Virtual_Environment_Name
// Virtual_Environment_Name : 上一步创建的虚拟环境名称
// 执行完此命令后,命令行进入创建的虚拟环境中,从前置提示字母可以看出
4、在虚拟环境中使用pip安装Tensorflow(选择一个安装即可)
需要确认的地方输入:y ,回车即可。
(1)、安装GPU版
// 使用了豆瓣的pip源,加快下载速度
pip install tensorflow-gpu -i https://pypi.douban.com/simple
// 默认版本最新版的tensorflow-gpu
pip install tensorflow-gpu==1.15.2 -i https://pypi.douban.com/simple
// 自定义安装1.15.2版的tensorflow-gpu
(2)、安装CPU版
// 使用了豆瓣的pip源,加快下载速度
pip install tensorflow -i https://pypi.douban.com/simple
// 默认版本最新版的tensorflow
pip install tensorflow==1.15.2 -i https://pypi.douban.com/simple
// 自定义安装1.15.2版的tensorflow
5、打开Anaconda进行验证
点击Environments,可以看到自己新建的虚拟环境,base(root)是安装Anconda时新建的python环境,一般不要动它。选中需要的环境,运行程序即可。
注:需要不同版本的tensorflow进行开发时,从新建一个虚拟环境开始即可。