- 热力学第零定律、温度及状态方程
- 热力学第一定律及其应用
- 平衡辐射(未包含)
- 1.3 用摄氏度表示道尔顿温标(在给定的压强下,理想气体体积的相对增量正比于温度的增量)
- 设:
- 积分得
- 代入水的熔点和沸点,解出
- 设:
- 1.10 实验测得某种气体的体积与温度、压强的关系
- 选取温度和压强作为自变量,得到微分表达式
- 由多元函数高阶导数的知识知
- 解出
- 1.13 证明
,得
- 取
- 得证
- 1.25 在大气中有一个封闭的绝热箱,其容积为
,开始时箱内有
摩尔,温度为
,压强为
的空气,箱外空气的温度和压强分别为
和
,且
,设空气可视为理想气体,其摩尔定容比热容
为常数。若在箱上有一个极小的小孔,箱外的空气将缓慢低流入箱内。试证明,当箱内外压强相等时箱内空气的温度为
。其中,
为流入箱内的空气的摩尔数,
为绝热指数,并导出
证明略
- 1.27 一绝热活塞将两端封闭的绝热气缸分成A,B两部分,A和B装有等量的单原子理想气体,活塞可在气缸内无摩擦地自由滑动。开始时A,B两边气体的体积均为
,压强均为
,温度均为
,现对A缸加热,直到B中的压强为
时,求加热过程中传递给A的热量。
- 1.30 一空气自深为H的海底浮出海面,海水的温度与深度h的关系为
- 已知海面上气泡体积为
,压强为
,海水的密度为
,求气泡上浮过程中对外做功及吸收的热量