(热学 热力学统计物理 )大题典选--------热力学状态与热力学第一定律

本文探讨了热力学的基本定律,包括热力学第一定律,并介绍了道尔顿温标在摄氏度下的表示方法。同时,通过实验数据解析了气体体积与温度、压强的关系,证明了理想气体状态方程。此外,还涉及了绝热过程中的气体变化,如封闭箱内气体的温度变化,以及空气在不同压强和温度条件下的动态。最后,讨论了空气从海底升至海面过程中对外做功和吸热的计算问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 热力学第零定律、温度及状态方程
  • 热力学第一定律及其应用
  • 平衡辐射(未包含)

  • 1.3  用摄氏度表示道尔顿温标(在给定的压强下,理想气体体积的相对增量正比于温度的增量)
    • 设:
      • \frac{dV}{V}=\alpha d\tau
      • 积分得ln\frac{V}{V_0}=\alpha (\tau -\tau _0)
      • 代入水的熔点和沸点,解出\alpha =\frac{1}{100}ln\frac{375.15}{275.15}
      • \tau =\frac{1}{\alpha }(\frac{t}{273.15}+1)
  • 1.10  实验测得某种气体的体积与温度、压强的关系
    • \left ( \frac{\partial V}{\partial T} \right )_p=\frac{a}{T^2}+\frac{b}{p}
    • \left ( \frac{\partial V}{\partial p} \right )=-Tf(p)
    • 选取温度和压强作为自变量,得到微分表达式
      • dV=\left ( \frac{\partial V}{\partial T} \right )_pdT+\left ( \frac{\partial V}{\partial P} \right )_Tdp
    • 由多元函数高阶导数的知识知
      • \left ( \frac{\partial ^2V}{\partial T\partial P} \right )=\left ( \frac{\partial ^2V}{\partial P\partial T} \right )
      • 解出f(p)=\frac{b}{p^2}
      • dV=d(-\frac{a}{T}+\frac{bT}{p})
      • V-V_0=-\frac{a}{T}+\frac{b}{p}T
  • 1.13  证明c_p-c_v=\left [ p+\left ( \frac{\partial U}{\partial V} \right )_T \right ]\left ( \frac{\partial V}{\partial T} \right )_p
    • H=U+PV,得
      • \left ( \frac{\partial H}{\partial T} \right )_p=\left ( \frac{\partial U}{\partial T} \right )_p+p\left ( \frac{\partial V}{\partial T} \right )_p
      • U=U\left [ T,V(T,p) \right ]
        • \left ( \frac{\partial H}{\partial T} \right )_p=\left ( \frac{\partial U}{\partial T} \right )_V+\left [ p+\left ( \frac{\partial U}{\partial T} \right )_T \right ]\left ( \frac{\partial V}{\partial T} \right )_p
        • 得证
  • 1.25  在大气中有一个封闭的绝热箱,其容积为V_0,开始时箱内有\upsilon_0摩尔,温度为T_0,压强为p_1的空气,箱外空气的温度和压强分别为T_0p_0,且p_0>p_1,设空气可视为理想气体,其摩尔定容比热容c_v为常数。若在箱上有一个极小的小孔,箱外的空气将缓慢低流入箱内。试证明,当箱内外压强相等时箱内空气的温度为T=\frac{(v_0+\gamma v')T_0}{v_0+v'}。其中,v'为流入箱内的空气的摩尔数,\gamma =\frac{c_p}{c_v}为绝热指数,并导出v'=\left ( \frac{p_0V_0}{RT_0} -v_0\right )\gamma

证明略


  • 1.27  一绝热活塞将两端封闭的绝热气缸分成A,B两部分,A和B装有等量的单原子理想气体,活塞可在气缸内无摩擦地自由滑动。开始时A,B两边气体的体积均为V_0,压强均为p_0,温度均为T_0,现对A缸加热,直到B中的压强为3p_0时,求加热过程中传递给A的热量。

Q=6p_0V_0


  •  1.30  一空气自深为H的海底浮出海面,海水的温度与深度h的关系为T=T_0-\frac{a}{H}h
  • 已知海面上气泡体积为V_0,压强为p_0,海水的密度为\rho,求气泡上浮过程中对外做功及吸收的热量

\Delta U=\frac{5}{2}\frac{p_0V_0}{T_0}a

W=\frac{p_0V_0}{T_0}\left ( \frac{ap_0}{\rho gH}+T_0 \right )ln\frac{p_0+\rho gh}{p_0}

Q=\Delta U+W



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值