常微分方程的幂级数解法

本文探讨了一阶微分方程的柯西定理,阐述了在解析域内的唯一解析解。特别地,文章通过举例介绍了勒让德方程的奇点、幂级数解法及其通项解——勒让德多项式,包括其性质和递推公式。同时,讨论了解析奇点的处理方法和指标方程的概念。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 柯西定理
    • 对于一阶微分方程\frac{dy}{dx}=f(x,y).f(x,y)在区域内解析,也就是任取区域内一点(x0,y0)有f(x_0,y_0)=\sum_{i,j=0}^\infty a_{i,j}(x-x_0)^i(y-y_0)^j。存在实数\rho使得初值问题在领域\begin{vmatrix} x-x_0 \end{vmatrix}<\rho内有唯一的解析解
  • 幂级数解法

    • 任何形如A(x)y''+B(x)y'+C(x)y=0微分都可以转换成y^{''}+p(x)y'+q(x)y=0的形式.除非A(x0)=0的一些特殊点.这可能会导致方程在x0附近没有解析解,成为微分方程的奇点
    • 如果p(x)和q(x)在(x0-r,x0+r)可以展开为x-x0的幂级数,那么上述方程的解也可以在此区间表示为y=\sum_{n=0}^{\infty}C_n(x-x_0)^n,其中C0和C1为任意常数,后面的常数由它们确定.
  • 例题:
    • y''=xy
    • y''=\sum_{n=0}^{\infty}(n+2)(n+1)a_{n+2}x^n
    • 令a_{-1}=0,比较系数可得递推公式a_{n-1}=(n+2)(n+1)a_{n+2}
    • a_n=\left\{\begin{matrix} a_{3n+2}=0\\ a_{3n+1}=\frac{a_1}{\prod _{i=1}^n 3i(3i+1)}\\ a_{3n}=\frac{a_0}{\prod_{i=1}^n 3i(3i-1)} \end{matrix}\right.
    • y=a_0\sum^{\infty}_{n=0}\frac{x^{3n}}{\prod _{i=1}^n 3i(3i-1)}+a_1\sum_{n=0}^{\infty}\frac{x^{3n+1}}{\prod_{i=1}^n 3i(3i+1)}
  • 勒让德方程(1-x^2)y''-2xy'+n(n+1)y=0
    • 勒让德方程有两个奇点x=\pm1,在\begin{vmatrix} x \end{vmatrix}<1有幂级数解y=\sum_{k=0}^\infty C_k x^k
    • 代入,求得通项
    • 解:
  • 勒让德多项式
    • 勒让德方程的幂级数解可以表示为y=C_0y_1(x)+C_1y_2(x)n\epsilon N时,y1(x),y2(x)一定有一个是n次多项式.n为偶数时是y1(x) n为奇数时是y2(x) 总之,一定可以统一几位一个多项式Pn(x).
      • P_n(x)=-\frac{1}{2^n}\sum_{k=0}^{[\frac{n}{2}]}\frac{(-1)^k(2n-2k)!}{k!(n-k)!(n-2k)!}x^{n-2k}
    • 勒让德多项式的性质
      • 性质一:P_n(x)=\frac{1}{2^nn!}\frac{d^n}{dx^n}(x^2-1)^n(x-x_0)^2y''+(x-x_0)\sum_{k=0}^\infty a_k(x-x_0)^k y'+\sum_{k=0}^{\infty}b_k(x-x_0)^ky=0
      • 性质二:G(x,t)=(1-2xt+t^2)^{-\frac{1}{2}}.有级数展开式G(x,t)=\sum_{n=0}^{\infty}P_n(x)t^n
      • 递推公式:(n+1)P_{n+1}(x)-(2n+1)xP_n(x)+nP_{n-1}(x)=0
      • 性质四:函数系Pn(x)是正交的\int_{-1}^{1}P_n(x)P_m(x)dx=\left\{\begin{matrix} 0,n\neq m\\ \frac{2}{2n+1},n=m \end{matrix}\right.
  • 广义幂级数解法
    • 针对A(x)y''+B(x)y'+C(x)y=0的奇点的解决方案
      • y=\sum_{k=0}^{\infty}C_k(x-x_0)^{k+\rho},C_0\neq 0
      • 方程在(x_0-r,x_0+r)内可表示为
      • 指标和指标方程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值