概率统计拾遗

几种常见分布的数学期望与方差

分布概率密度函数数学期望方差
0-1分布P\begin{Bmatrix} X=k \end{Bmatrix}=p^kq^{1-k}ppq
二项分布P\begin{Bmatrix} X=k \end{Bmatrix}=C_{n}^{k}p^kq^{n-k}npnpq
泊松分布P\begin{Bmatrix} X=k \end{Bmatrix}=\frac{\lambda^k}{k!}e^{-\lambda}\lambda\lambda
均匀分布f(x)=\left\{\begin{matrix} \frac{1}{b-a} &a<x<b \\ 0 & others \end{matrix}\right.\frac{a+b}{2}\frac{(a-b)^2}{12}
指数分布f(x)=\left\{\begin{matrix} \lambda e^{-\lambda x} & x>0\\ 0& others \end{matrix}\right.\frac{1}{\lambda}\frac{1}{\lambda ^2}
Gamma分布f(x)=\left\{\begin{matrix} \frac{\lambda^a}{\Gamma(a)}x^{a-1}e^{-\lambda x}\,\,\,x \geq 0\\ 0,x<0 \end{matrix}\right.\frac{\alpha}{\lambda}\frac{\alpha}{\lambda ^2}
正态分布f(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-u)^2}{2 \sigma^2}}u\sigma^2
柯西分布f(x,\lambda,\mu)=\frac{1}{\pi}\frac{\lambda}{\lambda^2+(x-\mu)^2}
卡方分布f(x)=\left\{\begin{matrix} \frac{1}{2^{\frac{n}{2}}\Gamma(\frac{n}{2})}e^{-\frac{x}{2}}x^{\frac{n}{2}-1},x>0\\ 0,x \leq 0 \end{matrix}\right.n2n
t分布0\frac{n}{n-2}
F(m,n)\frac{n}{n-2}\frac{2n^2(m+n-2)}{m(n-2)^2(n-4)}

几种具有可加性的分布

卷积公式

  • 设二维随机变量( X, Y) 的联合密度为 f(x,y) Z=X+Y ,则 Z 的密度函数为
f_{Z}(z)=\int_{-\infty}^{\infty}f(z-y,y)dy=\int_{-\infty}^{\infty}f(x,z-x)dz
  • 若X与Y相互独立,有卷积公式:

f_Z(z)=\int_{-\infty}^{\infty}f_X(z-y)f_Y(y)dy=\int_{-\infty}^{\infty}f_X(x)f_Y(z-x)dy


极大值与极小值的分布

Z=Max(X,Y)的分布函数

F_Z(z)=F_X(z)F_Y(z)

Z=Min(X,Y)的分布函数

F_Z(z)=1-(1-F_X(z))(1-F_Y(z))

几种具有可加性的分布

二项分布的可加性

        设随机变量\zeta \sim B(n,p),\zeta' \sim B(m,p),且\zeta,\zeta'相互独立,记\theta = \zeta + \zeta',则有\theta \sim B(m+n,p)

泊松分布的可加性

        设随机变量\zeta \sim P(\lambda_1),\zeta' \sim B(\lambda_2),且\zeta,\zeta'相互独立,记\theta = \zeta + \zeta',则有\theta \sim P(\lambda_1+\lambda_2)

二项分布的泊松近似

正态分布的可加性

        设随机变量X,Y彼此独立,X \sim N(\mu_1,\sigma_1^2),Y \sim N(\mu_2,\sigma_2^2),则有X+Y \sim N(\mu_1+\mu_2,\sigma_1^2+\sigma_2^2)

伽玛分布的可加性

        设随机变量,X,Y彼此独立,X \sim Ga(a_1,\beta),Y \sim N(a_2,\beta)则有X+Y \sim Ga(a_1+a_2,\beta)

柯西分布的可加性

       随机变量 ,X,Y彼此独立,X \sim p(\lambda_1,\mu_1),Y \sim p(\lambda_2,\mu_2),则有X+Y \sim p(p_1+p_2,\mu_1+\mu_2)

卡方分布可加性

        \chi _1^2 \sim \chi^2(m),\chi_2 ^2 \sim \chi(n),且\chi_1^1,\chi_2^2彼此独立,则有\chi_1^2 +\chi_2^2 \sim \chi^2(m+n)

具有可加性的概率分布间的关系

泊松定理

\lim_{n\rightarrow\infty}C_n^kp^k(1-p)^{n-k}=\frac{\lambda^k}{k!}e^{-\lambda}

棣莫佛-拉普拉斯

        设随机变量X \sim B(n,p),对于任意实数x,有\lim_{n \rightarrow \infty}P\begin{Bmatrix} \frac{X-np}{\sqrt{np(1-p)}}\leq x \end{Bmatrix}=\int_{-\infty}^{x}\frac{1}{\sqrt{2\pi}}e^{-t^2/2}dt=\Phi (x)

正态分布与泊松分布之间的关系

X_\lambda \sim P(\lambda),\lim_{\lambda\rightarrow\infty}P(\frac{X_\lambda-\lambda}{\sqrt{\lambda}}<x)=\frac{1}{\sqrt{2\pi}}\int_{-\infty}^xe^{-\frac{t^2}{2}}dt

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值