分布的可加性

若同一类分布的独立随机变量和的分布仍属于此类分布,则称此类分布具有可加性。

具有可加性的常用分布:前提X和Y独立

1、二项分布:若X~b(n,p),Y~b(m,p),则Z=X+Y~b(n+m,p)。

注意:这里要求这两个二项分布中的参数P要相同。

2、泊松分布:

则:

3、正态分布:

则:

4、伽马分布:

两个伽马分布中的尺度参数λ要相同。

5、分布:

  • 2
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
Wishart分布可加性可以通过证明矩阵的对数行列式的可加性来得到。具体地,假设$W_1$和$W_2$是两个$p \times p$的Wishart分布的矩阵,自由度分别为$n_1$和$n_2$,尺度矩阵分别为$V_1$和$V_2$。则矩阵的对数行列式的和为: $$ \begin{aligned} \log|W_1 + W_2| &= \log|W_1(I + W_1^{-1}W_2)| \\ &= \log|W_1| + \log|I + W_1^{-1}W_2| \\ &= (n_1-p-1)\log|V_1| - \sum_{i=1}^p\log\Gamma\left(\frac{n_1+1-i}{2}\right) \\ &\quad +\log|I + W_1^{-1}W_2| \\ &\quad + (n_2-p-1)\log|V_2| - \sum_{i=1}^p\log\Gamma\left(\frac{n_2+1-i}{2}\right) \\ &= \log|W_1| + \log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2}| \\ &\quad + \log|W_2| \\ &\quad - \log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2} + W_2^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_2^{-1/2}| \\ &\quad -\sum_{i=1}^p\log\Gamma\left(\frac{n_1+1-i}{2}\right) - \sum_{i=1}^p\log\Gamma\left(\frac{n_2+1-i}{2}\right) \end{aligned} $$ 其中,我们使用了矩阵的Woodbury矩阵恒等式$(A+UCV)^{-1}=A^{-1}-A^{-1}U(C^{-1}+VA^{-1}U)^{-1}VA^{-1}$,并将$W_1$分解为$W_1=Z_1Z_1^T$,其中$Z_1$是$p \times n_1$的矩阵,满足$Z_1^TZ_1=V_1$。同理,将$W_2$分解为$W_2=Z_2Z_2^T$,其中$Z_2$是$p \times n_2$的矩阵,满足$Z_2^TZ_2=V_2$。 进一步地,我们可以使用矩阵的特征值分解将上式中的$\log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2}|$表示为: $$ \begin{aligned} \log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2}| &= \sum_{i=1}^p\log(1+\lambda_i) \\ &= \sum_{i=1}^p\log\left(\frac{\lambda_i}{1+\lambda_i}\right) + \sum_{i=1}^p\log(1+\lambda_i) \\ &= \log|W_1^{-1}W_2| + \sum_{i=1}^p\log(1+\lambda_i) \end{aligned} $$ 其中,$\lambda_i$是矩阵$W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2}$的第$i$个特征值。 综上所述,我们可以将$\log|W_1+W_2|$表示为: $$ \begin{aligned} \log|W_1 + W_2| &= \log|W_1| + \log|W_2| + \log|I + W_1^{-1}W_2| \\ &\quad + \sum_{i=1}^p\log(1+\lambda_i) \\ &\quad -\log|I + W_1^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_1^{-1/2} + W_2^{-1/2}(W_1^{-1/2}W_2W_1^{-1/2})W_2^{-1/2}| \\ &\quad -\sum_{i=1}^p\log\Gamma\left(\frac{n_1+1-i}{2}\right) - \sum_{i=1}^p\log\Gamma\left(\frac{n_2+1-i}{2}\right) \end{aligned} $$ 因此,我们证明了Wishart分布可加性

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值