常微分方程两点边值问题的差分解法

  • 最近心好累啊。。。。。。
  • 这应该是这学期期末前的最后一篇,所以应该写得很好才是。。。
    • 本人不擅长考试。。。

  • 有限差分法
  • Richardson 外推法

Dirichlet 边值问题

最简微分方程两点边值问题精确解

常微分方程两点齐次边值问题解的先验估计式

  • v(x)\in C^2[a,b]为两点边值问题:

\left\{\begin{matrix} -v''+q(x)v=f(x) &a<x<b \\ v(a)=\alpha & \\ v(b)=\beta & \end{matrix}\right.(1)

  • 解的先验估计式为:

\left\{\begin{matrix} |v_1|\leq \frac{b-a}{\sqrt{6}}||f||\\ ||v||_\infty \leq \frac{(b-a)^2}{2\sqrt{6}}||f||_\infty \end{matrix}\right.

差分格式

常见的数值微分公式

\begin{matrix} g(c)=\frac{1}{2}[g(c-h)+g(c+h)]-\frac{h^2}{2}g''(\zeta_0)\\ g'(c)=\frac{1}{h}[g(c+h)-g(c)]-\frac{h}{2}g''(\zeta_0)\\ g'(c)=\frac{1}{h}[g(c)-g(c-h)]+\frac{h}{2}g''(\zeta_0)\\ g'(c)=\frac{1}{2h}[g(c+h)-g(c-h)]-\frac{h^2}{6}g'''(\zeta0)\\ g''(c)=\frac{1}{h^2}[g(c+h)-2g(c)+g(c-h)]-\frac{h^2}{12}g^{(4)}(\zeta_0)\\ g''(c)=\frac{2}{h}[\frac{g(c+h)-g(c)}{h}-g'(c)]-\frac{h}{3}g'''(\zeta_0)\\ \frac{1}{12}[g''(c-h)+10g''(c)+g''(c+h)]=\frac{1}{h^2}[g(c+h)-2g(c)+g(c-h)]+\frac{h^4}{240}g^{(6)}(\zeta_0) \end{matrix}

差分格式的建立

  • 网格剖分-->网格步长-->网格结点-->网格-->网格函数
  • 记:

\begin{matrix} V_{i-\frac{1}{2}}=\frac{1}{2}(V_i+V_{i-1})\\ \delta_xv_{i-\frac{1}{2}}=\frac{1}{h}(v_i-v_{i-1})\\ \delta_x^2v_i=\frac{1}{h}(\delta_xv_{i+\frac{1}{2}}-\delta_xv_{i-\frac{1}{2}})\\ D_{+v_i}=\frac{1}{h}(v_{i+1}-v_i)\\ D_{-v_i}=\frac{1}{h}(v_i-v_{i-1})\\ \end{matrix}

  • 求解(1)的差分格式

\left\{\begin{matrix} -\delta_x^2u_i+q(x_i)u_i=f(x_i)\\ u_0=\alpha,u_m=\beta \end{matrix}\right.(2)

  • 局部截断误差

R_i=-\frac{h^2}{12}u^{(4)}(\zeta_i)

  • 差分格式和微分方程问题相容

\max_{1\leq i \leq m-1}|R_i|\rightarrow 0

差分格式解的存在性

  • 定理:差分格式是唯一可解的
  • 差分格式的求解方法:Thomas 算法
  • 对于三对角方程组

差分格式解的先验估计式

  • v={v_i|0\leq i \leq m}为差分格式:

\begin{matrix} -\delta_x^2v_i+q(x_i)v_i=f_i,1\leq i \leq m-1\\ v_0 = 0,v_m=0 \end{matrix}

的解,则有:

\begin{matrix} |v_1|\leq \frac{b-a}{\sqrt{6}}||f||\\ ||v||_\infty\leq \frac{(b-a)^2}{2\sqrt{6}}||f||_\infty \end{matrix}

差分格式的收敛性和稳定性

收敛性

  • \begin{Bmatrix} u(x)|a\leq x \leq b \end{Bmatrix}为定解问题(1)的解,(2)为差分格式(2)的解,记

e_i=u(x_i)-u_i,0\leq i \leq m

则有:

||e||_\infty \leq \frac{M_4(b-a)^2}{24\sqrt{6}}h^2

其中:

M_4 = \max_{a\leq x\leq b}|u^{(4)}(x)|

稳定性

  • 在计算f(x_i)时就会有一个小的误差g_i,设v=(v_0,v_1,v_2,...,v_m)

\begin{matrix} -\delta_x^2+q(x_i)v_i=f(x_i)+g_i\\ v_0=\alpha,v_m=\beta \end{matrix}

的解,记

\varepsilon _i=v_i-u_i

得,镊动方程:

\begin{matrix} -\delta_x^2\varepsilon _i+q(x_i)\varepsilon_i=g_i,1\leq i\leq m-1\\ \varepsilon_0=0,\varepsilon_m=0 \end{matrix}

有:

||\varepsilon ||_\infty\leq \frac{(b-a)^2}{2\sqrt{6}} \max_{1\leq i \leq m-1}|g_i|

Richardson 外推方法

  • Richardson外推公式:p_1(h)=\frac{4}{3}p_0(\frac{h}{2})-\frac{1}{3}p_0(h)

紧差分格式

-\delta_x^2u_i+\frac{1}{12}[q(x_{i-1})u_{i-1}+10q(x_i)u_i+q(x_{i+1})u_{i+1}]=\frac{1}{12}[f(x_{i-1})+10f(x_i)+f(x_{i+1})],1\leq i \leq m-1,u_0=\alpha,u_m=\beta

导数边界值问题

导数边界值问题的差分格式

如下的导数边界值问题:

\begin{matrix} -u''(x)+q(x)u(x)=f(x),a<x<b\\ -u'(a)+\lambda_1 u(a)=\alpha,u'(b)+\lambda_2 u(b)=\beta \end{matrix}

差分格式:

\left\{\begin{matrix} -\delta_x^2u_i+q(x_i)u_i=f(x_i),1\leq i \leq m-1\\ -D_+u_0+\frac{h}{2}q(x_0)u_0+\lambda_1u_0=\alpha+\frac{h}{2}f(x_0)\\ D_{-}u_m+\frac{h}{2}q(x_m)u_m+\lambda_2u_m=\beta+\frac{h}{2}f(x_m) \end{matrix}\right.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值