电动力学专题:相对论变换

四维空间中的物理量

  • 洛伦兹标量
  • 四维矢量
  • 四维张量
  • 在洛伦兹变换下具确定变换性质的量称为协变量
    • 洛伦兹不变量(在洛伦兹变换下不变的量)
      • 间隔
      • 固有时
      • 每一类四维协变量的平方都是洛伦兹不变量
    • 协变性举例
      • ​​​​​​​麦克斯韦方程组
      • 能量-动量关系(狭义相对论下的)
      • 光速不变原理
      • 质量-能量关系(狭义相对论中的)
      • 洛伦兹力

速度变换关系

\left\{\begin{matrix} x_1=x\\ x_2=y\\ x_3=z\\ x_4=ict \end{matrix}\right.\left\{\begin{matrix} x_1'=\gamma(x_1+i\beta x_4)\\ x_2'=x_2\\ x_3'=x_3\\ x_4'=\gamma(-i\beta x_1+x4) \end{matrix}\right.

洛伦兹变换矩阵

\alpha_{\mu\nu}=\begin{bmatrix} \gamma & 0 & 0 & i\beta\gamma \\ 0 & 1 &0 &0 \\ 0 & 0 & 1 &0 \\ -i\beta\gamma& 0& 0 & \gamma \end{bmatrix}

速度变换关系

\begin{matrix} \beta = \frac{v}{c}\\ \gamma = \frac{1}{\sqrt{1-\beta^2}} \end{matrix}


  • 洛伦兹变换

\begin{matrix} x'=\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}\\ y'=y\\ z'=z\\ t'=\frac{t-\frac{v}{c^2}x}{\sqrt{1-\frac{v^2}{c^2}}} \end{matrix}

  • 速度变换

\begin{matrix} u_x=\frac{dx}{dt}&u_y=\frac{dy}{dt}&u_z=\frac{dz}{dt}\\ x'=\frac{x-vt}{\sqrt{1-\frac{v^2}{c^2}}}&t'=\frac{t-\frac{v}{c^2}x}{\sqrt{1-\frac{v^2}{c^2}}}\\ dx'=\gamma(dx-vdt)=\gamma(u_x-v)dt\\ dt'=\gamma(dt-\frac{\beta}{c}dx)=\gamma(1-\frac{\beta u_x}{c})dt\\ u_x'=\frac{dx'}{dt'}=\frac{u_x-v}{1-\frac{vu_x}{c^2}}\\ u_y'=\frac{dy'}{dt'}=\frac{1}{\gamma}\frac{u_y}{1-\frac{vu_x}{c^2}}\\ u_z'=\frac{dz'}{dt'}=\frac{1}{\gamma}\frac{u_z}{1-\frac{vu_x}{c^2}} \end{matrix}

力学量

  • \mu:物(动系)相对于静系的运动速度

四维速度

\begin{matrix} x_\mu=(x,ict),\frac{d}{dt}x_\mu=(\frac{d}{dx}\vec{x},ic)=(\vec{u},ic)\\ U_\mu=\frac{dx_\mu}{d\tau}=\frac{dx_\mu}{dt}\frac{dt}{d\tau}=\gamma(\vec{u},ic) \end{matrix}

四维动量

\begin{matrix} P_\mu=m_0U_\mu=(\vec{P},\frac{i}{c}W)\\ \vec{P}=\gamma(m_0\vec{u})\\ W=\gamma(m_0c^2) \end{matrix}

四维加速度

\vec{a}_\mu=\frac{d}{d\tau}\vec{U}_\mu

四维力

\begin{matrix} \vec{P}_\mu=(\vec{P},\frac{i}{c}W)\\ \vec{K}_\mu=(\frac{d\vec{P}}{d\tau},\frac{i}{c}\frac{dW}{dt})\\ \vec{K}=\frac{d\vec{P}}{d\tau}\\ \vec{K}_\mu=(\vec{K},\frac{i}{c}\vec{K}\cdot\vec{u}) \end{matrix}

四维波矢量

  • 波峰波谷起伏有序传播的过程是一个物理事件,相位仅是记录这个物理事件,不应随参考系而变化,因此相位应满足不变性
\begin{matrix} \varphi=\vec{k}\cdot\vec{x}-\omega t\\ k_\mu=(\vec{k},i\frac{\omega}{c})\\ k'_\mu=\alpha_{\mu\nu}k_v \end{matrix}

电流密度四维矢量

i_\mu=(\vec{J},ic\rho)

\left\{\begin{matrix} \rho'=\gamma(\rho-\frac{\beta}{c} j_x)\\ j_x'=\gamma(j_x-v\rho)\\ j_y'=j_y\\ j_z'=j_z \end{matrix}\right.

相对论多普勒效应

  • 光源沿 𝑥1正向以速度 v 运动
k'_\mu=a_{\mu\nu}k_\nu
\left\{\begin{matrix} k'_1=\gamma(k_1-\frac{v}{c^2}\omega)\\ k'_2=k_2\\ k'_3=k_3\\ \omega'=\gamma(\omega-vk_1) \end{matrix}\right.
  • k x1 轴的夹角为𝜃,k’x_1 轴夹角为𝜃’,k1=kcos𝜃=(𝛚/c)cos 𝜃 K1=k’cos𝜃′=(𝛚’/c)cos 𝜃’
  • 相对论多普勒效应\omega=\frac{\omega'}{\gamma(1-\frac{v}{c}cos\theta)}
  • 相对论光行差公式tan\theta=\frac{sin\theta'}{\gamma(cos\theta'+\frac{v}{c})}

电磁场的张量分析法

\vec{B}=\triangledown \times \vec{A},\vec{E}=-\triangledown \varphi-\frac{\partial \vec{A}}{\partial t}

  • 引入一个反对称张量F_{\mu \nu}=\frac{\partial A_\nu}{\partial A_\mu}-\frac{\partial A_\mu}{\partial A_\nu}

F_{\mu \nu}=\begin{bmatrix} 0 & B_3 &-B_2 & -\frac{i}{c}E_1\\ -B_3& 0 &B_1 & -\frac{i}{c}E_2\\ B_2& -B_1 & 0 & -\frac{i}{c}E_3\\ \frac{i}{c}E_1& \frac{i}{c}E_2 & \frac{i}{c}E_3 & 0 \end{bmatrix}

麦克斯韦方程组

\left\{\begin{matrix} \triangledown \cdot \vec{E} = \frac{\rho}{\varepsilon_0 }\\ \triangledown \cdot \vec{B} = 0\\ \triangledown \times \vec{B} = \mu_0\varepsilon_0\frac{\partial \vec{E}}{\partial t}+\mu_0\vec{J}\\ \triangledown \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \end{matrix}\right.

  • 用电磁场张量可以将麦克斯韦方程组写成明显的协变式

\left\{\begin{matrix} \frac{\partial F_{\mu \nu}}{\partial x}=\mu_0 J_\mu\\ \frac{\partial F_{\mu\nu}}{\partial x_\lambda}+\frac{\partial F_{\nu\lambda}}{\partial x_\mu}+\frac{\partial F_{\lambda \mu}}{\partial x_\nu}=0 \end{matrix}\right.

  • 麦克斯韦方程组的洛伦兹协变性可用电磁场张量分析法和洛伦兹微分变换法验证
  • 电磁场张量分析法结果证明电场和磁场可以统一为四维张量,反映出电磁场的统一性和相对性,电场和磁场是一种物质的两个方面相对论动能

麦克斯韦方程组洛伦兹协变形的证明

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值