理论力学专题:刚体

刚体运动的欧拉定理

  • 欧拉定理:具有一个固定点的刚体的任一位移等效于绕该定点的某一轴线的转动
    • 或者:定点运动刚体的任何位移都可以通过绕过该定点某轴的一次转动来实现
  • chasles 定理:
    • 刚体的最一般位移可以视为其上任意一点的平移加上绕该点的一个转动

欧拉刚体运动方程

角速度

  • 角速度矢量
    • 有限转动和无限小转动
      • 有限转动不是矢量,不满足矢量加法对易律
      • 无限小转动是矢量,满足矢量加法交换律
    • 角速度的绝对性
      • 角速度与基点的选取无关
      • 角速度在实验室系中测得

欧拉角

  • 对于作定点运动的刚体,一定点为原点,建立两个坐标系,静止坐标系与本体坐标系。本体坐标系相对于空间坐标系的取向代表了刚体在空间中的取向
  • 转动矩阵

x_{\alpha}'=A_{\alpha\beta}x_\beta

  • 转动矩阵的性质
    • 可逆,正交,A^TA=1
    • det (A) = 1
    • 转动矩阵的本征方程:(A - \lambda I) X = 0 有一本征值1,相应的本征矢对应于转动操作的转轴,另外两个本征值为 exp(\pm i\Phi),\Phi 为转角
  • 进动角\varphi

A_\varphi=\begin{pmatrix} cos\varphi &sin\varphi &0 \\ -sin\varphi & cos\varphi & 0\\ 0 & 0 & 1 \end{pmatrix}

  • 章动角\theta

A_\theta=\begin{pmatrix} 1 & 0 &0 \\ 0&cos\theta & sin\theta \\ 0 & -sin\theta & cos\theta \end{pmatrix}

  • 自转角\psi

A_\psi =\begin{pmatrix} cos\psi &sin\psi &0 \\ -sin\psi & cos\psi & 0\\ 0 & 0 & 1 \end{pmatrix}

  • 静止系到本体系的变换矩阵 A_\psi A_\theta A_\varphi

欧拉刚体运动学方程

  • 对角速度的复杂的展开,背不下来

欧拉刚体运动学方程

  • 刚体运动微分方程
    • 将作用在刚体上的力简化为过置信的力和对质心的力矩

转动惯量张量与惯量主轴

转动惯量张量与惯量系数

  • 设轴的方向余弦分别为 \alpha,\beta,\gamma 取轴向单位矢量 \vec{l_0} = \alpha \vec{i} + \beta \vec{j} + \gamma \vec{k}
  • 于是: \rho_i = |\vec{r_i}\times \vec{l_0}|

I=\alpha^2\sum m_i(y_i^2+z_i^2)+\beta^2\sum m_i(z_i^2+z_i^2)+\gamma^2 \sum m_i (x_i^2+y_i^2)-2\alpha\beta \sum m_ix_iy_i-2\beta\gamma\sum m_iy_iz_i-2\gamma\alpha\sum m_iz_ix_i

\left\{\begin{matrix} I_{xx}=\sum m_i(y_i^2+z_i^2)\\ I_{yy}=\sum m_i(y_i^2+z_i^2)\\ I_{zz}=\sum m_i(y_i^2+z_i^2)\\ I_{xy}=\sum m_i x_i y_i\\ I_{yz}=\sum m_i y_i z_i\\ I_{zx}=\sum m_i z_i x_i \end{matrix}\right.

  • 对角元为绕x轴,y轴,z轴的转动惯量

\hat{I}=\begin{pmatrix} I_{xx} &-I_{xy} & -I_{xz}\\ -I_{xy} &I_{yy} &-I_{yz} \\ -I_{xz}& -I_{yz} & I_{zz} \end{pmatrix}

  • 转动惯量与惯量系数的矩阵关系

I=\bigl(\begin{smallmatrix} \alpha & \beta & \gamma \end{smallmatrix}\bigr)\begin{pmatrix} I_{xx} &-I_{xy} & -I_{xz}\\ -I_{xy} &I_{yy} &-I_{yz} \\ -I_{xz}& -I_{yz} & I_{zz} \end{pmatrix}\bigl(\begin{smallmatrix} \alpha\\ \beta\\ \gamma \end{smallmatrix}\bigr)

  • 非对角元称为惯量积
  • 一般而言,惯量张量矩阵的每个元素都是时间的函数,且与坐标系的选择有关,但在本体坐标系中这些矩阵元不随时间变化

惯量主轴

  • 实对称矩阵的对角化
    • 定理:A是一个实对称矩阵,则一定存在一个正交矩阵Q使得Q^{-1}AQ=D或者Q^{t}AQ=D
      • 求特征值
      • 求特征向量
      • 将同一个特征值所对应的不同特征向量正交化
      • 将所有正交特征向量规范化
      • 得到Q和D
  • 转动惯量张量的对角化
    • 一个实对称矩阵可以通过某种正交变化变成其对角形式
    • 这种使得惯量张量矩阵取对角形式的坐标系称为主轴坐标系,它的三个相互垂直的坐标轴称为惯量主轴,对角元称为主转动惯量
    • 由初始坐标系到主轴坐标系的正交变换称为主轴变换

惯量椭球(ellipsoid)与惯量主轴

  • 取轴上一点Q,使该点到坐标原点的距离R = 1/\sqrt{I}
    • Q点的轨迹为中心在原点的椭球(惯量椭球)
  • 惯量主轴
    • 若以惯量椭球的主轴----惯量主轴为坐标轴的椭球方程可以化简为 
      • I = I_1(I_xx) \alpha^2 + I_2 \beta^2 + I_3 \gamma^2 这样就消除了惯量积
  • 对具有某种对称关系的刚体,可以比较方便的找到主轴:
    • 过定点的轴若为刚体的对称轴,则该轴必是主轴
    • 过定点若有刚体的对称面,则过定点与对称面垂直的轴必是主轴

刚体的动量矩

  • 定点转动刚体对固定点的动量矩为

\vec{J}=\sum \vec{r_i}\times m_i\vec{v_i}=\sum \vec{r_i}\times m_i (\vec{\omega} \times \vec{r_i})

又:\vec{a}\times(\vec{b}\times\vec{c})=(\vec{a}\cdot\vec{c})\vec{b}-(\vec{a}\cdot\vec{b})\vec{c}

\vec{J}=\sum m_i (\vec{\omega}|\vec{r_i}|^2-\vec{r_i}(\vec{\omega}\cdot\vec{r_i}))

  • 展开并考虑惯量系数

\left\{\begin{matrix} J_x=I_{xx}\omega_x-I_{xy}\omega_y-I_{xz}\omega_z\\ J_y=-I_{yx}\omega_x+I_{yy}\omega_y-I_{yz}\omega_z\\ J_y=-I_{zx}\omega_x-I_{zy}\omega_y-I_{zz}\omega_z \end{matrix}\right.

  • 动量矩的方向与角速度方向一般并不一致,只有转轴是主轴时 \vec{J} = I \vec{\omega}

角动量与转动动能

T=1/2\begin{bmatrix} I_{xx}\omega_x^2+ & I_{yy}\omega_y^2+ &I_{zz}\omega_z^2 \\ -2I_{xy}\omega_x\omega_y &-2I_{yz}\omega_y\omega_z & -2I_{zx}\omega_z\omega_x \end{bmatrix}

  • 当旋转惯量主轴为坐标轴时,上式可化简为:

T=1/2\begin{bmatrix} I_{xx}\omega_x^2+ & I_{yy}\omega_y^2+ &I_{zz}\omega_z^2\end{bmatrix}

刚体的平动与绕固定轴的转动

  • 平动
  • 刚体的定轴转动
    • 转动定理:I_zz \dot{\omega_z}=I_{zz}\ddot{\theta}=\sum M_{iz}
  • 轴上附加压力
    • 定轴转动轴上的附加压力既与刚体自身有关,又与所受的外力情况有关,但总可以简化为轴上两点约束的模型

打击中心

  • 定轴转动刚体在受到突然打击时,若轴上的约束力没有发生变化,则打击点称做打击中心。
    • 转轴必是过轴上一点的惯量主轴,否则打击中心不存在
    • 打击力的方向应在垂直于转轴的平面内,且与质心与转轴形成的平面S垂直
    • 打击力与S平面的焦点与质心在转轴的同侧,到转轴的距离满足\left\{\begin{matrix} I_{xz}=I_{yz}=0\\ y=-\frac{I_{zz}\Delta \omega}{F\Delta t}=\frac{I_{zz}}{my_c} \end{matrix}\right.

刚体的平面平行运动

  • 刚体的平面运动运动学
  • 转动瞬心
    • 任一瞬时刚体上速度为零的一点称为转动瞬心
  • 平面平行运动动力学

欧拉动力学方程

欧拉动力学方程

\left\{\begin{matrix} \omega_x=\dot{\varphi}sin\theta sin\psi + dot{\theta}cos\phi\\ \omega_y=\dot{\varphi}sin\theta cos\psi - dot{\theta}sin\phi\\ \omega_z = \dot{\psi} + \dot{\varphi}cos\theta \end{matrix}\right.

  • 定点转动刚体上一点的速度公式  \vec{v} = \vec{\omega} \times \vec{r}
  • 加速度:\vec{a} = \dot{\vec{\omega}}\times \vec{r} (转动加速度)+ \vec{\omega}\times(\vec{\omega}\times\vec{r})(向轴加速度)
  • 欧拉动力学方程

\left\{\begin{matrix} I_1\dot{\omega_x}-(I_2-I_3)\omega_y\omega_z=M_x\\ I_2\dot{\omega_y}-(I_3-I_1)\omega_z\omega_x=M_y\\ I_3\dot{\omega_z}-(I_1-I_2)\omega_x\omega_y=M_z \end{matrix}\right.

  • 2
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值