Brouwer 不动点原理

  • Brouwer 不动点原理

实变函数知识回顾

  • 开球
  • 开集
  • 内点
  • 边界点
  • 聚点
  • 导出集
  • 完备集
  • 有界集
  • 定理:R^n中任意多个开集的并集仍是开集。任意多个闭集的交集仍是闭集
  • Bolzano-Weierstrass 引理:R^n中任一有界无穷点集中必存在一个收敛的子序列

Cauchy 序列

Cauchy 序列的定义

  • 定义 R^n中的一个序列\begin{Bmatrix} x_k \end{Bmatrix}_{k=1}^\infty。若对于每一个给定的正数\varepsilon >0,都存在整数N(\varepsilon )>0使得对于任意的n>N(\varepsilon )和任意整数p都有\begin{Vmatrix} x_{n+p}-x_n \end{Vmatrix}<\varepsilon成立,则称\begin{Bmatrix} x_k \end{Bmatrix}_{k=1}^\infty为一个Cauchy 序列

Cauchy 准则

  •  R^n中的一个序列\begin{Bmatrix} x_k \end{Bmatrix}_{k=1}^\infty收敛的充分必要条件是\begin{Bmatrix} x_k \end{Bmatrix}_{k=1}^\infty为一个Cauchy 序列

多元映射的导数

Frechet 可导

  • 定义:设F:D\subset R^n\rightarrow R^m,x_0\in int(D)。如果存在一个m\times n 的矩阵A(x_0),使得对于h\in R^n都有\lim_{h\rightarrow 0}\frac{1}{\begin{Vmatrix} h \end{Vmatrix}}\begin{Vmatrix} F(x_0+h)-F(x_0)-A(x_0)h \end{Vmatrix}=0.其中范数可以是R^m中的任意一种范数

Gateaux 可导

  • 定义:设F:D\subset R^n\rightarrow R^m,x_0\in int(D)。如果存在一个m\times n 的矩阵A(x_0),使得对于h\in R^n都有\lim_{t\rightarrow 0}\frac{1}{t}\begin{Vmatrix} F(x_0+th)-F(x_0)-tA(x_0)h \end{Vmatrix}=0
  • G-导算子若存在即唯一

Brouwer 不动点原理

凸集

  • \OmegaR^n中的非空集合,若对任意的x,y\in \Omega及任意的0\leq \lambda \leq 1\left ( 1-\lambda \right )x+\lambda y\in \Omega
  • 则称\Omega为凸集

Brouwer 不动点原理

  • \Omega\subset R^n是一个有界闭凸集,P:\Omega \rightarrow R^n为一连续映射且P(\Omega)\subset \Omega则映射P\Omega中一定存在不动点

单纯形

单纯形

  • 定义:设u^0,u^1,...,u^m\in R^n,m\leq n 如果向量\begin{Bmatrix} u^j-u^0 \end{Bmatrix}_{j=1}^m线性无关,则由所有满足下述条件的点x=\sum_{j=0}^{m}a_ju^j,\sum_{j=0}^ma_j = 1,a_j \geq 0,j=0,1,2,...,m构成的点集\sigma称为R^n上的m维单纯形,记作\sigma=<u^0,u^1,...,u^m>,u^0,u^1,...,u^m\in R^n,m\leq n称为单纯形的顶点

规则相连

  • 两个n维的单纯形\sigma_1,\sigma_2称为是规则相连的,如果\sigma_1\neq \sigma_2 而且 \sigma_1 \cap \sigma_2 是一个 n-1 维的单纯形,如果有N个n维的单纯形相互规则相连且D=\bigcup_{i=1}^{N}\sigma_i。则T=\begin{Bmatrix} \sigma_i \end{Bmatrix}_{i=1}^N称为是集合D的一个单纯形剖分,T的所有顶点集记成T^0
  • 全标号单纯形
    • 定义:l:T^0\rightarrow N^0={0,1,...,n}称为剖分T的一个整数标号。T中恰好具有标号\begin{Bmatrix} 0,1,...,n \end{Bmatrix}的单纯形称为全标号单纯形
  • 恰当标号
    • 定义:设TS^n的一个单纯形部分。若对任意的i\in (0,1,...,n),u^i对面的n-1 维单纯形所有顶点标号不为i,则对T 这样的标号称为恰当标号

Brouwer 不动点的构造

Spenner 引理

  • 设 R^n中n维单纯形S^n=<u^0,u^1,...,u^n> 若S^n的一个单纯形剖分T具有恰当标号,则T中一定有奇数个全标号单纯形

  • 其余部分过于复杂
    • 假以时日 必然给你补充

单纯形算法

  • 有点复杂
    • 在其他博客中加以说明

Cohen 图

  • csdn 这个编译器。。。不会花

压缩映射原理的应用

  • 简单得说
    • Brouwer 不动点定理用于判断一个映射是否存在不动点但不能给出不动点的个数
    • 单纯形算法一般可以给出一个不动点
    • 压缩映射原理解决的是不动点的存在唯一性问题

压缩映射的定义

  • G:D\subset R^n\rightarrow R^n 如果对于所有的x,y\in D,都有\begin{Vmatrix} G(x)-G(y) \end{Vmatrix}\leq \alpha \begin{Vmatrix} x-y \end{Vmatrix}其中0<\alpha<1,\begin{Vmatrix} \cdot \end{Vmatrix}R^n中的某种向量范数,则称GD上的一个压缩映射

压缩映射原理

  • G:D\subset R^n\rightarrow R^n是压缩映射,其中D_0为闭集,而且G(D_0)\subset D_0,则在D_0中有G的唯一不动点x^*满足G(x^*)=x^*

压缩映射原理的应用

一种停机准则的构造

  • 假设G:D\subset R^n\rightarrow R^n满足压缩映射原理,任取x_0\in D_0,构造迭代x_{k+1}=G(x_k),则\begin{Bmatrix} x_k \end{Bmatrix}\subset D_0,\lim_{k\rightarrow \infty}x_k = x^*,而且\begin{Vmatrix} x_k-x^* \end{Vmatrix}\leq \frac{\alpha}{1-\alpha}\begin{Vmatrix} x_k-x_{k-1} \end{Vmatrix}

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值