- Brouwer 不动点原理
实变函数知识回顾
- 开球
- 开集
- 内点
- 边界点
- 聚点
- 导出集
- 完备集
- 有界集
- 定理:
中任意多个开集的并集仍是开集。任意多个闭集的交集仍是闭集
- Bolzano-Weierstrass 引理:
中任一有界无穷点集中必存在一个收敛的子序列
Cauchy 序列
Cauchy 序列的定义
- 定义
中的一个序列
。若对于每一个给定的正数
,都存在整数
使得对于任意的
和任意整数
都有
成立,则称
为一个Cauchy 序列
Cauchy 准则
-
中的一个序列
收敛的充分必要条件是
为一个Cauchy 序列
多元映射的导数
Frechet 可导
- 定义:设
。如果存在一个m\times n 的矩阵
,使得对于
都有
.其中范数可以是
中的任意一种范数
Gateaux 可导
- 定义:设
。如果存在一个m\times n 的矩阵
,使得对于
都有
- G-导算子若存在即唯一
Brouwer 不动点原理
凸集
- 设
为
中的非空集合,若对任意的
及任意的
有
- 则称
为凸集
Brouwer 不动点原理
- 设
是一个有界闭凸集,
为一连续映射且
则映射
在
中一定存在不动点
单纯形
单纯形
- 定义:设
如果向量
线性无关,则由所有满足下述条件的点
构成的点集
称为
上的m维单纯形,记作
,
称为单纯形的顶点
规则相连
- 两个n维的单纯形
称为是规则相连的,如果
而且
是一个 n-1 维的单纯形,如果有N个n维的单纯形相互规则相连且
。则
称为是集合D的一个单纯形剖分,T的所有顶点集记成
- 全标号单纯形
- 定义:
称为剖分
的一个整数标号。
中恰好具有标号
的单纯形称为全标号单纯形
- 定义:
- 恰当标号
- 定义:设
是
的一个单纯形部分。若对任意的
对面的n-1 维单纯形所有顶点标号不为
,则对T 这样的标号称为恰当标号
- 定义:设
Brouwer 不动点的构造
Spenner 引理
- 设
中n维单纯形
若
的一个单纯形剖分T具有恰当标号,则T中一定有奇数个全标号单纯形
- 其余部分过于复杂
- 假以时日 必然给你补充
单纯形算法
- 有点复杂
- 在其他博客中加以说明
Cohen 图
- csdn 这个编译器。。。不会花
压缩映射原理的应用
- 简单得说
- Brouwer 不动点定理用于判断一个映射是否存在不动点但不能给出不动点的个数
- 单纯形算法一般可以给出一个不动点
- 压缩映射原理解决的是不动点的存在唯一性问题
压缩映射的定义
- 设
如果对于所有的
,都有
其中
为
中的某种向量范数,则称
为
上的一个压缩映射
压缩映射原理
- 设
是压缩映射,其中
为闭集,而且
,则在
中有
的唯一不动点
满足
压缩映射原理的应用
一种停机准则的构造
- 假设
满足压缩映射原理,任取
,构造迭代
,则
,而且