非线性特征值问题

  • 非线性特征值问题
  • 一类常见的非线性问题

F:D\subset R^n\times R^p \rightarrow R^n

F(u,\lambda)-0,u\in R^n,\lambda \in R^p

最重要的定理----隐函数定理

这个问题可以先复习这篇博文隐函数定理链接

隐函数定理

  • G:R^n\times R^p\rightarrow R^n,对充分小的\rho_1>0,\rho_2>0满足下述条件
    • G(u^0,\lambda^0)=0,u^0\in R^n,\lambda^0\in R^p
    • G_u=G_u(u^0,\lambda^0)有逆
    • G(u,\lambda),G_u(u,\lambda)S(u^0,\rho_1)\times S(\lambda^0,\rho_2)连续,其中
      • \begin{matrix} S(u^0,\rho_1)=\begin{Bmatrix} u\in R^n|||u-u^0||\leq \rho_1 \end{Bmatrix}\\ S(u^0,\rho_2)=\begin{Bmatrix} u\in R^p|||\lambda-\lambda^0||\leq \rho_2 \end{Bmatrix} \end{matrix}
  • 则对任意的\lambda \in S(\lambda^0,\rho_2),存在u(\lambda) \in S(u^0,\rho_1)使得
    • u(\lambda^0)=u^0
    • G(u(\lambda),\lambda)=0,\forall \lambda \in S(\lambda^0,\rho_2)
    • 对任意\lambda \in S(\lambda^0,\rho_2),G(u,\lambda)=0S(u^0,\rho_1)内不存在除u(\lambda)外的其他解
    • u(\lambda)S(\lambda^0,\rho_2)关于\lambda连续

正则点与奇异点

  • F:R^n\times R \rightarrow R^n连续且F(u^0,\lambda^0)=0如果F_u(u^0,\lambda^0)非奇异,则称(u^0,\lambda^0)为关于\lambda 的正则点,否则称为奇异点

临界点

  • G:R^m\rightarrow R^n连续可微C=\begin{Bmatrix} x\in R^m|rank(G'(x))<min(n,m) \end{Bmatrix}
  • C中的点称为G的临界点
  • R^m\C 正则点
  • G(C) \subset R^n 临界值集合
  • R^n\G(C) 正则值集合

Sard 定理

  • G\in C^1(R^m) \bigcap C^{m-n+}(R^m),则G(C)上R^n 上的零测度集合
    • 其中C^k(R^m)表示R^m 上的k次连续可微映射构成的集合

定理

  • G:R^{n+}\rightarrow R^n而且G\in C^2(R^{n+1}),p是G中的一个正则值。则方程G(x)=p的解集合G^{-1}(p)任意的一个解支x(s)是下列三种情况之一
    • G^{-1}(p)=\varnothing
    • x(s) 是一条不自相交的闭曲线
    • 当 |s|\rightarrow\infty时,||s||\rightarrow \infty

奇异点的分类 

  • 极限点
  • 简单极限点
  • 简单分叉点
  • 超临界分叉点
  • 亚临界叉型分叉

AUTO 软件

  • 暂时的
  • 我会新开一篇来讲

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

River Chandler

谢谢,我会更努力学习工作的!!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值