- 非线性特征值问题
- 一类常见的非线性问题
最重要的定理----隐函数定理
隐函数定理
- 设
,对充分小的
满足下述条件
有逆
在
连续,其中
- 则对任意的
,存在
使得
- 对任意
在
内不存在除
外的其他解
在
关于
连续
正则点与奇异点
- 设
连续且
如果
非奇异,则称
为关于\lambda 的正则点,否则称为奇异点
临界点
- 设
连续可微
- C中的点称为G的临界点
- R^m\C 正则点
- G(C) \subset R^n 临界值集合
- R^n\G(C) 正则值集合
Sard 定理
- 设
,则G(C)上R^n 上的零测度集合
- 其中
表示R^m 上的k次连续可微映射构成的集合
- 其中
定理
- 设
而且
是G中的一个正则值。则方程
的解集合
任意的一个解支
是下列三种情况之一
- x(s) 是一条不自相交的闭曲线
- 当
时,
奇异点的分类
- 极限点
- 简单极限点
- 简单分叉点
- 超临界分叉点
- 亚临界叉型分叉
AUTO 软件
- 略
- 暂时的
- 我会新开一篇来讲