多元函数变限积分求导问题
隐函数问题
研究什么条件下才能确定隐函数
隐函数的连续性和可微性
隐函数存在性条件
若
能确定隐函数,则存在
若要求
可微,由链式法则得:
隐函数存在唯一性定理
若满足下列条件:
(1)函数在以
为内点得某一区域
上连续
(2)
(3)在内存在连续的对y的偏导数
(4)
则在点的某领域
内,方程
唯一地确定
定义在某区间内的(隐)函数
,使得
(1),当
时,
且
(2)在
内连续
隐函数可微性定理
函数满足隐函数存在唯一性定理,并在
上存在连续的对x的偏导数,则函数
确定的隐函数
在其定义域
内有连续导函数且
多元函数隐函数问题
若满足下列条件:
(1)在以
为内点的区域
上连续
(2)
(3)偏导数在D内存在且连续
(4)
则在点 的某邻域
内,方程
唯一地确定了一个定义在
的某邻域
内的 n 元连续函数(隐函数)
使得
类似的 不写了
y在U(Q_0)内有连续偏导数