线性代数|例题:利用伴随矩阵求逆矩阵

【例1:同济线代习题二 9.1】求下列矩阵的逆矩阵:
A = ( 1 2 2 5 ) \boldsymbol{A} = \begin{pmatrix} 1 & 2 \\ 2 & 5 \end{pmatrix} A=(1225)

解答 因为 ∣ A ∣ = 5 − 4 = 1 ≠ 0 |\boldsymbol{A}| = 5 - 4 = 1 \ne 0 A=54=1=0,所以 A \boldsymbol{A} A 可逆。有
A − 1 = 1 ∣ A ∣ A ∗ = ( 5 − 2 − 2 1 ) \boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^* = \begin{pmatrix} 5 & -2 \\ -2 & 1 \end{pmatrix} A1=A1A=(5221)

【例2:同济线代习题二 9.2】求下列矩阵的逆矩阵:
A = ( cos ⁡ θ − sin ⁡ θ sin ⁡ θ cos ⁡ θ ) \boldsymbol{A} = \begin{pmatrix} \cos \theta & - \sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} A=(cosθsinθsinθcosθ)

解答 因为 ∣ A ∣ = cos ⁡ 2 θ + sin ⁡ 2 θ = 1 ≠ 0 |\boldsymbol{A}| = \cos^2 \theta + \sin^2 \theta = 1 \ne 0 A=cos2θ+sin2θ=1=0,所以 A \boldsymbol{A} A 可逆。于是有
A − 1 = 1 ∣ A ∣ A ∗ = ( cos ⁡ θ sin ⁡ θ − sin ⁡ θ cos ⁡ θ ) \boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^* = \begin{pmatrix} \cos \theta & \sin \theta \\ - \sin \theta & \cos \theta \end{pmatrix} A1=A1A=(cosθsinθsinθcosθ)

【例3:同济线代习题二 9.3】求下列矩阵的逆矩阵:
A = ( 1 2 − 1 3 4 − 2 5 − 4 1 ) \boldsymbol{A} = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 4 & -2 \\ 5 & -4 & 1 \\ \end{pmatrix} A= 135244121

解答 因为 ∣ A ∣ = 4 + ( − 20 ) + 12 − ( − 20 ) − 8 − 6 = 2 ≠ 0 |\boldsymbol{A}| = 4 + (-20) + 12 - (-20) - 8 - 6 = 2 \ne 0 A=4+(20)+12(20)86=2=0,所以 A \boldsymbol{A} A 可逆。于是有
A − 1 = 1 ∣ A ∣ A ∗ = 1 2 ( − 4 2 0 − 13 6 − 1 − 32 14 − 2 ) = ( − 2 1 0 − 13 2 3 − 1 2 − 16 7 − 1 ) \boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^* = \frac{1}{2} \begin{pmatrix} -4 & 2 & 0 \\ -13 & 6 & -1 \\ -32 & 14 & -2 \\ \end{pmatrix} = \begin{pmatrix} -2 & 1 & 0 \\ -\frac{13}{2} & 3 & -\frac{1}{2} \\ -16 & 7 & -1 \\ \end{pmatrix} A1=A1A=21 413322614012 = 2213161370211

【例4:同济线代习题二 9.4】求下列矩阵的逆矩阵:
A = ( a 1 0 a 2 ⋱ 0 a n ) ( a 1 a 2 ⋯ a n ≠ 0 ) \boldsymbol{A} = \begin{pmatrix} a_1 & & & 0 \\ & a_2 & & \\ & & \ddots & \\ 0 & & & a_n \\ \end{pmatrix} \hspace{1em} (a_1 a_2 \cdots a_n \ne 0) A= a10a20an (a1a2an=0)

解答 因为 ∣ A ∣ = a 1 a 2 ⋯ a n ≠ 0 |\boldsymbol{A}| = a_1 a_2 \cdots a_n \ne 0 A=a1a2an=0,所以 A \boldsymbol{A} A 可逆。

矩阵 ∣ A ∣ |\boldsymbol{A}| A 是对角行列式,只有主对角线上的 n n n 个元素不是 0 0 0。因此,对于任意 ∣ A ∣ |\boldsymbol{A}| A 中的 ( i , j ) (i,j) (i,j) 元的余子式 M i j M_{ij} Mij

  • i = j i = j i=j 时,划去第 i i i 行和第 i i i 列后的新行列式 ∣ B ∣ |\boldsymbol{B}| B 仍为对角行列式,显然有 ∣ B ∣ = a 1 ⋯ a i − 1 a i + 1 ⋯ a n |\boldsymbol{B}| = a_1 \cdots a_{i-1} a_{i+1} \cdots a_n B=a1ai1ai+1an
  • i ≠ j i \ne j i=j 时,划去第 i i i 行和第 j j j 列后, ∣ A ∣ |\boldsymbol{A}| A 的主对角线上的 ( i , i ) (i,i) (i,i) 元和 ( j , j ) (j,j) (j,j) 元均被划去,此时新行列式 ∣ B ∣ |\boldsymbol{B}| B 中只有 n − 2 n-2 n2 个元素不为 0 0 0,但 ∣ B ∣ |\boldsymbol{B}| B n − 1 n-1 n1 阶方阵,因此 ∣ B ∣ |\boldsymbol{B}| B 中一定有一行和一列中所有元素均为 0 0 0,进而 ∣ B ∣ = 0 |\boldsymbol{B}| = 0 B=0

于是有
A − 1 = 1 ∣ A ∣ A ∗ = 1 a 1 a 2 ⋯ a n ( a 2 ⋯ a n 0 a 1 a 3 ⋯ a n ⋱ 0 a 1 ⋯ a n − 1 ) = ( 1 a 1 0 1 a 2 ⋱ 0 1 a n ) \boldsymbol{A}^{-1} = \frac{1}{|\boldsymbol{A}|} \boldsymbol{A}^* = \frac{1}{a_1 a_2 \cdots a_n} \begin{pmatrix} a_2 \cdots a_n & & & 0 \\ & a_1 a_3 \cdots a_n & & \\ & & \ddots & \\ 0 & & & a_1 \cdots a_{n-1} \\ \end{pmatrix} = \begin{pmatrix} \frac{1}{a_1} & & & 0 \\ & \frac{1}{a_2} & & \\ & & \ddots & \\ 0 & & & \frac{1}{a_n} \\ \end{pmatrix} A1=A1A=a1a2an1 a2an0a1a3an0a1an1 = a110a210an1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值