线性代数06 矩阵的逆以及求法

本文探讨线性代数中的逆矩阵概念及其求解方法,包括初等变换法、伴随矩阵法,介绍如何通过矩阵变换求解线性方程组,特别指出伴随矩阵求逆适用于低阶方阵。
摘要由CSDN通过智能技术生成

我们已经了解了对于方程组来说,如何根据他的系数矩阵的变化,来实现高斯-诺尔当消元算法,并可以快速的判断方程组的解的情况。这样看上去非常的完美,但是我们在线性代数中,还有一个非常重要的部分就是矩阵的运算,似乎除了初等变换以外,现在目前还对任何的求解线性方程没有帮助。现在我想要探讨一下矩阵的逆。以及逆矩阵的求法,看看它有什么用把!

1 逆矩阵

对于任何一个矩阵A来说,若存在一个矩阵B,使得: A ∗ B = I A*B=I AB=I
那我们称这个矩阵B为矩阵A的逆矩阵,通常我们记作 A − 1 A^{-1} A1
因此对于一个线性方程Ax=b来说,我们可以做以下的变换:
A − 1 A x = A − 1 b I x = A − 1 b x = A − 1 b A^{-1}Ax=A^{-1}b\\ Ix=A^{-1}b\\x=A^{-1}b A1Ax=A1bIx=A1bx=A1b
由以上式子,我们可以知道,若我们能够求的系数矩阵的逆矩阵,那么我们就可以通过矩阵乘法来求解x。

2 求法

(1)初等变换求矩阵的逆(通用解法)

原理:
对于矩阵A来说,若存在一个矩阵E,使得以下式子成立:
E ∗ A = I E*A=I EA=I
那么对于矩阵E来说,一定可以将矩阵E分解成若干个代表了一次初等变换的初等矩阵,这些初等矩阵的作用,就是将原来的矩阵A经过若干次初等变换,变成了单位矩阵:
E = E 1 E 2 . . . . . . E n E=E_{1}E_{2}......E_{n} E=E1E2......En
根据逆矩阵的定义,我们很容易知道以下式子的成立:
E = A − 1 E=A^{-1} E=A1
我们此时不妨假设有以下操作同时进行:
操 作 1 : E 1 ∗

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值