线性代数|证明:相似矩阵的特征值相同

定理 1 若 n n n 阶矩阵 A \boldsymbol{A} A B \boldsymbol{B} B 相似,则 A \boldsymbol{A} A B \boldsymbol{B} B 的特征多项式相同,从而 A \boldsymbol{A} A B \boldsymbol{B} B 的特征值亦相同。

证明 因为 A \boldsymbol{A} A B \boldsymbol{B} B 相似,即有可逆矩阵 P \boldsymbol{P} P, 使
P − 1 A P = B (1) \boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} = \boldsymbol{B} \tag{1} P1AP=B(1)
因为单位矩阵与任何同阶方阵都是可交换的(证明见 “矩阵可交换的定义和性质”),所以有
λ E = λ E ( P − 1 P ) = P − 1 ( λ E ) P (2) \lambda \boldsymbol{E} = \lambda \boldsymbol{E} (\boldsymbol{P}^{-1} \boldsymbol{P}) = \boldsymbol{P}^{-1} (\lambda \boldsymbol{E}) \boldsymbol{P} \tag{2} λE=λE(P1P)=P1(λE)P(2)
( 1 ) (1) (1) ( 2 ) (2) (2) 代入矩阵 B \boldsymbol{B} B 的特征多项式 ∣ B − λ E ∣ |\boldsymbol{B} - \lambda \boldsymbol{E}| BλE,有
∣ B − λ E ∣ = ∣ P − 1 A P − P − 1 ( λ E ) P ∣ = ∣ P − 1 ( A − λ E ) P ∣ = ∣ P − 1 ∣ ∣ ( A − λ E ) ∣ ∣ P ∣ = ∣ ( A − λ E ) ∣ \begin{align*} |\boldsymbol{B} - \lambda \boldsymbol{E}| & = |\boldsymbol{P}^{-1} \boldsymbol{A} \boldsymbol{P} - \boldsymbol{P}^{-1} (\lambda \boldsymbol{E}) \boldsymbol{P}| \\ & = |\boldsymbol{P}^{-1} (\boldsymbol{A} - \lambda \boldsymbol{E}) \boldsymbol{P}| \\ & = |\boldsymbol{P}^{-1}| |(\boldsymbol{A} - \lambda \boldsymbol{E})| |\boldsymbol{P}| \\ & = |(\boldsymbol{A} - \lambda \boldsymbol{E})| \end{align*} BλE=P1APP1(λE)P=P1(AλE)P=P1∣∣(AλE)∣∣P=(AλE)
所以 A \boldsymbol{A} A B \boldsymbol{B} B 的特征多项式相同。得证。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

长行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值