文章目录 一. 基本内容与重要结论 1. 特征值、特征向量、特征方程的概念 2. 矩阵相似 二. 重要定理 1. 特征向量的有限次变换,还是特征向量 2. 特征值与特征矩阵的关系 3. 特征值与特征向量的相关性 4. 相似则有相同的特征值(只是必要条件) 4.1. 相似的四个必要条件 5. 矩阵对角化相关定理 5.1. 可对角化的充要条件 5.2. 实对称矩阵必可对角化 6. **Schmidt**正交化方法 本章要求 要理解特征值、特征向量的概念,掌握矩阵特征值的性质,掌握求矩阵特征值、特征向量的方法. 要理解矩阵相似的概念,掌握相似矩阵的性质,搞清矩阵能相似对角化的条件,掌握将矩阵化为相似对角矩阵的方法. 要熟悉实对称矩阵特征值、特征向量的特殊性质,掌握用正交矩阵化实对称矩阵为对角矩阵的方法. 一. 基本内容与重要结论 1. 特征值、特征向量、特征方程的概念 跟齐次线性方程组结合 => 先求特征值然后再求特征向量 2. 矩阵相似 相似特性: