线性代数及其应用:经典矩阵特征值证明

本文详细探讨了不同类型的矩阵,包括实对称矩阵、正交方阵、实斜对称矩阵等,以及它们的特征值证明。还涉及厄米矩阵、正定矩阵、投影矩阵和反射矩阵的特征值特性。此外,文章阐述了矩阵的幂次稳定性、马尔科夫矩阵、Jordan标准型和奇异值分解等相关概念。
摘要由CSDN通过智能技术生成

前言

  这里记录一下一些经典矩阵的特征值证明,留作今后用。要证明的矩阵如下图所示,有些矩阵的特征向量也会一并推出。
在这里插入图片描述
  最左边列是矩阵的名称,中间一列是对应矩阵的特征值,最右边一列是特征向量或者特征向量满足的性质,这张图在《Linear algebra and its applications》中第五章最后。


实对称矩阵

A T = A A^{T}=A AT=A
证 明 : 设 A x = λ x , 且 A ‾ = A , 其 中 A ‾ 表 示 A 的 共 轭 证明:设Ax=\lambda x,且\overline{A}=A,其中\overline{A}表示A的共轭 Ax=λxA=AAA
则 ( x ‾ ) T A x = ( x ‾ ) T λ x = λ ( x ‾ ) T x 则 (\overline{x})^{T}Ax=(\overline{x})^{T}\lambda x=\lambda(\overline{x})^{T}x (x)TAx=(x)Tλx=λ(x)Tx
( x ‾ ) T A x = ( x ‾ ) T A T x = ( A x ‾ ) T x = ( A ‾ x ‾ ) T x = ( A x ‾ ) T x = ( λ x ‾ ) T x = ( λ ‾ x ‾ ) T x = λ ‾ ( x ‾ ) T x (\overline{x})^{T}Ax=(\overline{x})^{T}A^{T}x=(A\overline{x})^{T}x=(\overline{A}\overline{x})^{T}x=(\overline{Ax})^{T}x=(\overline{\lambda x})^{T}x=(\overline{\lambda}\overline{x})^{T}x=\overline{\lambda}(\overline{x})^{T}x (x)TAx=(x)TATx=(Ax)Tx=(Ax)Tx=(Ax)Tx=(λx)Tx=(λx)Tx=λ(x)Tx
因 为 特 征 向 量 不 为 0 , 所 以 ( x ‾ ) T x ≠ 0 因为特征向量不为0,所以(\overline{x})^{T}x \neq 0 0(x)Tx̸=0
所 以 λ = λ ‾ 所以\lambda = \overline{\lambda} λ=λ
所 以 λ 是 实 数 所以\lambda是实数 λ


正交方阵

Q T = Q − 1 Q^{T}=Q^{-1} QT=Q1
证 明 : 设 Q x = λ x 证明:设Qx=\lambda x Qx=λx
则 ( Q x ) T = ( λ x ) T 则(Qx)^{T}=(\lambda x)^{T} (Qx)T=(λx)T
即 x T Q T = λ x T 即x^{T}Q^{T}=\lambda x^{T} xTQT=λxT
上 式 左 乘 到 Q x = λ x 上式左乘到Qx=\lambda x Qx=λx
得 到 x T Q T Q x = λ x T λ x 得到x^{T}Q^{T}Qx=\lambda x^{T}\lambda x xTQTQx=λxTλx
即 x T x = λ x T x 即x^{T}x=\lambda x^{T}x xTx=λxTx
因 为 特 征 向 量 不 为 0 , 所 以 x T x ≠ 0 因为特征向量不为0,所以x^{T}x \neq 0 0xTx̸=0
所 以 λ = λ ‾ 所以\lambda = \overline{\lambda} λ=λ
所 以 λ 是 实 数 所以\lambda是实数 λ


实斜对称矩阵

A T = − A A^{T}=-A AT=A
证 明 : 设 A x = λ x , 且 A ‾ = A , 其 中 A ‾ 表 示 A 的 共 轭 证明:设Ax=\lambda x,且\overline{A}=A,其中\overline{A}表示A的共轭 Ax=λxA=AAA
则 ( x ‾ ) T A x = ( x ‾ ) T λ x = λ ( x ‾ ) T x 则 (\overline{x})^{T}Ax=(\overline{x})^{T}\lambda x=\lambda(\overline{x})^{T}x (x)TAx=(x)Tλx=λ(x)Tx
( x ‾ ) T A x = − ( x ‾ ) T A T x = − ( A x ‾ ) T x = − ( A ‾ x ‾ ) T x = − ( A x ‾ ) T x = − ( λ x ‾ ) T x = − ( λ ‾ x ‾ ) T x = − λ ‾ ( x ‾ ) T x (\overline{x})^{T}Ax=-(\overline{x})^{T}A^{T}x=-(A\overline{x})^{T}x=-(\overline{A}\overline{x})^{T}x=-(\overline{Ax})^{T}x=-(\overline{\lambda x})^{T}x \\ =-(\overline{\lambda}\overline{x})^{T}x=-\overline{\lambda}(\overline{x})^{T}x (x)TAx=(x)TATx=(Ax)Tx=(Ax)Tx=(Ax)Tx=(λx)Tx=(λx)Tx=λ(x)Tx
因 为 特 征 向 量 不 为 0 , 所 以 ( x ‾ ) T x ≠ 0 因为特征向量不为0,所以(\overline{x})^{T}x \neq 0 0(x)Tx̸=0
所 以 λ = − λ ‾ 所以\lambda = -\overline{\lambda} λ=λ
所 以 λ 是 虚 数 数 所以\lambda是虚数数 λ


厄米矩阵

A H = A A^{H}=A AH=A
证 明 : 设 A x = λ x 证明:设Ax=\lambda x Ax=λx
则 x H A x = x H λ x = λ x H x 则x^{H}Ax=x^{H}\lambda x=\lambda x^{H}x xHAx=xHλx=λxHx
同 时 有 ( A x ) H = ( λ x ) H 同时有(Ax)^{H}=(\lambda x)^{H} (Ax)H=(λx)

  • 6
    点赞
  • 48
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值