线性代数(四) 特征值&相似矩阵&二次型

前言

前面主要讲述的是方程组和矩阵的关系,现在了解下矩阵和矩阵的关系

方阵的特征值与特征向量

假设A为n阶方阵,对于一个数 λ \lambda λ

若存在:非零列向量 α \alpha α,使得: A α ⃗ = λ α ⃗ A\vec{\alpha}=\lambda\vec{\alpha} Aα =λα

  • λ \lambda λ叫做矩阵A的一个特征值

  • α ⃗ \vec{\alpha} α 叫做对应特征值的特征向量

在这里插入图片描述

  • 由于 α ⃗ \vec\alpha α 是非零列向量
  • λ \lambda λ作为未知量, A − λ E = 0 A-\lambda E = 0 AλE=0
  • 因为存在 λ \lambda λ解 => ∣ A − λ E ∣ = 0 |A-\lambda E| = 0 AλE=0

求解特征方程

给一个n阶矩阵A写出特征矩阵
( 4 − 2 1 1 ) − ( λ 0 0 λ ) = ( 4 − λ − 2 1 1 − λ ) \begin{pmatrix} 4 & -2\\ 1 & 1\end{pmatrix} - \begin{pmatrix} \lambda & 0\\ 0 & \lambda\end{pmatrix} = \begin{pmatrix} 4- \lambda & -2\\ 1 & 1-\lambda\end{pmatrix} (4121)(λ00λ)=(4λ121λ)
将特征矩阵转为特征行列式
∣ 4 − λ − 2 1 1 − λ ∣ = − ∣ 1 1 − λ 4 − λ − 2 ∣ = − ∣ 1 1 − λ 0 − 2 − ( 1 − λ ) ∗ ( 4 − λ ) ∣ = 0 \begin{vmatrix} 4- \lambda & -2\\ 1 & 1-\lambda\end{vmatrix} = -\begin{vmatrix} 1 & 1-\lambda\\ 4- \lambda& - 2\end{vmatrix} =-\begin{vmatrix} 1 & 1-\lambda\\ 0 & -2-(1-\lambda) *(4- \lambda) \end{vmatrix} = 0 4λ121λ = 14λ1λ2 = 101λ2(1λ)(4λ) =0
求出根
λ 2 − 5 λ + 6 = 0 ⟹ λ 1 = 2 , λ 2 = 3 \lambda^2-5\lambda + 6 =0 \Longrightarrow \lambda_1=2 ,\lambda_2=3 λ25λ+6=0λ1=2,λ2=3
求解特征值对应的特征向量

  • λ 1 = 2 , λ 2 = 3 \lambda_1=2 ,\lambda_2=3 λ1=2,λ2=3 代入 ( A − λ E ) α ⃗ = 0 (A-\lambda E)\vec{\alpha} = 0 AλEα =0
  • 在这里插入图片描述
  • 在这里插入图片描述

基本性质
在这里插入图片描述

  • 特征值和特征向量,就是类似于 给“坐标” 求他的坐标系的问题。
  • 特征值 λ \lambda λ用于消除“坐标”某一维度,得到 特征向量为这一维度的 “坐标系”
  • 如果出现了 λ \lambda λN重根,则得到的特征向量 “坐标系” 包含N个维度
证明不同特征值对应的特征向量是线性无关的

在这里插入图片描述

方阵的迹

在这里插入图片描述

  • 方阵的行列式=方阵的全部特征值之积
  • 方阵主对角线元素之和=方阵的全部特征值之和

证明:特征值之和等于迹,特征值之积等于行列式

相似矩阵

在这里插入图片描述
相似矩阵的定义,可以用坐标系变换的视角来理解

  1. 需要把:A和B看做是两个变换
  2. 那么 A = P − 1 B P A=P^{-1}BP A=P1BP具体是指:
    • A是P坐标系下的一个<变换>
    • 该<变换>若在标准坐标系下观察则是B变换

例如:在标准坐标系下有一个伸缩变换为B,在P坐标系下相同的伸缩变换观察到的是A
在这里插入图片描述

若A和B相似,因观察的视角不同,但本质是相同的变换

相似矩阵的性质

若A和B相似,即 A ∽ B B ∽ A A \backsim B \quad B \backsim A ABBA

  1. 相似矩阵的行列式值相同
  2. 相似矩阵的特征值相同
  3. 相似矩阵的秩相同
  4. 相似矩阵的迹相同
  5. 相似矩阵的可逆性相同

二次型

在这里插入图片描述
如果存在可逆的线性变换
在这里插入图片描述
x = P y x=Py x=Py线性变换代入原来的二次型得
f = λ 1 y 1 2 + λ 2 y 2 2 + . . . + λ n y n 2 f= \lambda_1y_1^2 + \lambda_2y_2^2+...+\lambda_ny_n^2 f=λ1y12+λ2y22+...+λnyn2

即将这种只含平方项(不含交叉项)的二次型称为标准形式的二次型,简称标准型

  • 充分必要条件是存在n阶可逆矩阵 P P P
  • 其中 λ 1 , λ 2 , . . . λ n \lambda_1,\lambda_2,...\lambda_n λ1,λ2,...λn 恰为 A A A全部特征值。
  • 任何二次型必可经过可逆线性变换化为标准型
  • 任何对称矩阵必可合同于对角矩阵

另外可以根据二次型不同条件进行分类
在这里插入图片描述

二次型的规范型

初等矩阵作合同因子 P P P所进行的合同变换称为初等合同变换.任何合同变换必可经过有限多次初等合同变换实现对角矩阵后.还可进一步用实数域上的合同变换,将正数化为1,复数化为-1,并可调整位置使得矩阵最终化为如下形式
在这里插入图片描述
任何实二次型 f f f 必可经过实数域上的可逆线性变换化为规范型,且实规范型是唯一的。
在这里插入图片描述

看一个具体案例求解规范型
在这里插入图片描述

主要参考

11.3 求解特征值和特征向量(基础解系法)
11.4 特征值与特征向量的性质
11.5特征值与矩阵的迹
1.6 特征根的代数重数与几何重数
11.7 相似矩阵到底在说什么
证明:特征值之和等于迹,特征值之积等于行列式
浅谈矩阵的相似对角化
线性代数——二次型与对称矩阵
二次型及其它标准型

  • 1
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值