Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration_CVPR19

CVPR2019 oral

URL: http://openaccess.thecvf.com/content_CVPR_2019/html/He_Filter_Pruning_via_Geometric_Median_for_Deep_Convolutional_Neural_Networks_CVPR_2019_paper.html

TL;DR

这篇文章提出了一种基于几何中位数的卷积核修剪方法,核心思想是找出那些信息冗余且可以被替代的卷积核进行修剪。

Algorithm

作者提出一种基于几何中位数的卷积核修剪方法,不同于以往的基于核范数指标的修剪方法,作者提出一种新的指标,几何中位数。该指标旨在找出各层中卷积核之间的共同信息,然后将冗余可替代的卷积核修剪掉。

38

首先,作者对当前的基于核范数指标的剪枝方法进行分析,指出这种指标的有效性有两个并不总是能满足的依赖:1)卷积核的范数偏差应比较大;2)卷积核的最小范数应该尽可能小。如下图所示:

47

上图的实验结果反映了卷积核范数分布的两个问题:1)实际中,网络各层中,卷积核的范数之间偏差较小。这种情况下,卷积核的范数分布太密集,导致很难选出合适的阈值来辨别出更重要的卷积核。2)范数的最小值较大。具有相对较小norm的filters,虽然根据范数规则的指标来看,它们相对不太重要,但是它们仍然在网络中有重要贡献。 这两个问题都是不利于基于范数规则的剪枝的。

然后,为了摆脱这些基于范数的方法的不足,作者提出了基于几何中位数的方法,并给出了理论推导。

首先给出这个方法的理论前提:由于几何中位数是欧氏空间中数据中心性的经典鲁棒估计,我们使用几何中位数来得到单个卷积层中各个卷积核的公共信息。某卷积层的几何中位数定义如下:
21
如果在该层中,某些卷积核具有核几何中位数相同或相似的值,则这些卷积核便可以被该层中的其他卷积核所取代,因此,修剪掉它们对网络的性能不会产生不良影响。这些卷积核的定义如下:
01
因为几何中位数在计算几何中是一个重要的问题,对它的估计一般比较耗时。在本文这种情况下, 因为最后的一些点事一列已知的点(即该层中的候选滤波器),因此该问题可以被简化。下面作者进行了问题的简化。最后简化得到:
45

这表明几何中位数附近的filters可以被其他层取代,然后通过fine-tune,少量丢失的信息可以恢复。(最终还是要进行fine-tune,所以这篇文章的novelty就在于提出了一个新的筛选指标,修剪流程和之前的流程完全相同。)

Experiments

实验部分和以往的模型压缩方面文章一样,分别在cifar10和imagenet上进行测试。

1)resent在cifar10上的修剪效果。
36

2)resnet在imagenet上的效果
52

3)vgg16在cifar10上的修剪效果
06

Thoughts

感觉这篇文章的作者比较会写,novelty并不算高。其novelty主要在于提出了一个新的筛选指标-几何中位数,然后加了求该指标理论推导,其他的如修剪流程和之前的流程完全相同,还是传统的基于规则的剪枝方法。

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值