模型剪枝-Filter Pruning via Geometric Median for Deep Convolutional Networks Acceleration

背景介绍

在这里插入图片描述
很明显,作者针对之前的filter剪枝进行调整,原有的方法只对L1-NORM值比较低的filter进行剪枝,现在可以看到对于Large norm和meidum norm的filter也进行了剪枝,而且没有将全部的small norm的filter进行剪枝。
这是因为只对L1-NORM值比较低的filter进行剪枝有两个约束条件:
1)权重的标准差足够大 2)权重的最小的L1-norm应该趋近于0

这种情况下分布如图所示在这里插入图片描述
也有可能分布如图所示
在这里插入图片描述
1)范数的标准差太小;2)最小范数的值仍然很大。如果出现情况1,很多滤波器有相似的重要性,我们不知道到底应该去掉哪个。如果出现情况2,我们很难找到特征图越接近于0的滤波器。
实际上的分布情况如何?
在这里插入图片描述

FPGM方法

一句话概括就是基于几何中位数的滤波器评价指标
在这里插入图片描述
几何中位数是对于欧几里得空间的点的中心的一个估计。我们认为滤波器也是欧氏空间中的点,于是我们可以根据计算GM来得到这些滤波器的“中心”,也就是他们的共同性质。如果某个滤波器接近于这个GM,可以认为这个滤波器的信息跟其他滤波器重合,甚至是冗余的,于是我们可以去掉这个滤波器而不对网络产生大的影响。去掉它后,它的功能可以被其他滤波器代替。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值