前言
最近写论文需要插入很多图片,为了蒙混过关,找了很多很多数据增强的手段,增强论文的丰富性,大家不要学我哈,反正我把技巧放这儿了!!!哈哈哈哈哈哈哈哈哈
1. Data Augmentation
1.1 数据增强的作用
大家都知道在深度学习网络训练中,模型的样本越充足训练出来的网络模型泛化性越强,鲁棒性越高。最好的例子就是SSD对大目标效果很好,对小目标效果很差,但当使用数据增强后,涨分立马上去了,原因就在于数据增强crop,可以让小目标变成大目标。
- 增加训练的数据量,提高模型的泛化能力
- 增加噪声数据,提升模型的鲁棒性
- 一定程度上能解决过拟合问题,样本过少容易出现过拟合
- 解决样本不平衡问题,例如某个类别过少,数据增强可以增强这个类别的数量。
1.2 图像增强小工具
我写了一款图像增强的小工具,大家可以查看连接下载使用
2. 数据增强的手段
数据增强的手段太多了,我就不一一解释了,直接总结吧
- 几何变换:反转/平移/旋转/缩放/裁剪
- 颜色变换:加噪声/亮度/饱和度/颜色反转/直方图均衡/色彩平衡/
- 基于GAN网络数据增强:用生成模型,生成不同风格的图像
- 高级增强:Cutout/Mixup/One-hot/Cutmix/AutoAugment/Sample pairing/FMix
- 网络中增强:RandAugment/Refinement/Mosaic/DropOut/DropOut/DropBlock
下面简单是介绍一些大家可能不太熟悉的概念:
Cutout:图像中挖掉一个矩形快补0
Mixup:image——两张图片线性叠加,label——one-hot形式进行相同的线性叠加
Cutmix:Cutout + Mixup,image——在图片中挖出来的矩形用另外一张图片填充,label——做同样的叠加
Sample pairing:image——两张图片直接做平均,label——选取其中一张
FMix:采用Fourier变换选取挖掉和补充的区域
推荐一下网站:
https://segmentfault.com/a/1190000022784467
https://jishuin.proginn.com/p/763bfbd29660
https://www.pythonf.cn/read/169722
3. 数据增强的代码
3.1 代码
如果大家想深入了解,建议大家跑跑代码
import os
import cv2
import numpy as np
class Resize(object):
"""
调整大小
"""
def __init__(self, output_size):
self.output_size = output_size
def __call__(self, X, Y):
_X = cv2.resize(X, self.output_size, interpolation=cv2.INTER_NEAREST)
w, h = self.output_size
c = Y.shape[-1]
# _Y = cv2.resize(Y, self.output_size)
_Y = np.zeros((h, w, c))
for i in range(Y.shape[-1]):
_Y[..., i] = cv2.resize(Y[..., i], self.output_size, interpolation=cv2.INTER_NEAREST)
return _X, _Y[...,0]
class Clip(object):
"""
彩色截断
"""
def __init__(self, mini, maxi=None):
if maxi is None:
self.mini, self.maxi = 0, mini
else:
self.mini, self.maxi = mini, maxi
def __call__(self, X, Y):
mini_mask = np.where(X < self.mini)
maxi_mask = np.where(X > self.maxi)
X[mini_mask] = self.mini
X[maxi_mask] = self.maxi
return X, Y
class Normalize(object):
"""
最大最小值归一化
"""
def __init__(self, axis=None):
self.axis = axis
def __call__(self, X, Y):
mini = np.min(X, self.axis)
maxi = np.max(X, self.axis)
X = (X - mini) / (maxi - mini)
X = 255 * X
return X, Y
class Standardize(object):
"""
标准归一化
"""
def __init__(self, axis=None):
self.axis = axis
def __call__(self, X, Y):
mean = np.mean(X, self.axis)
std = np.std(X, self.axis)
X = (X - mean) / std
X = 255 * X
return X, Y
class Flip(object):
"""
反转
"""
def __call__(self, X, Y):
for axis in [0, 1]:
if np.random.rand(1) < 0.5:
X = np.flip(X, axis)
Y = np.flip(Y, axis)
return X, Y
class Crop(object):
def __init__(self, min_size_ratio, max_size_ratio=(1, 1)):
self.min_size_ratio = np.array(list(min_size_ratio))
self.max_size_ratio = np.array(list(max_size_ratio))
def __call__(self, X, Y):
size = np.array(X.shape[:2])
mini = self.min_size_ratio * size
maxi = self.max_size_ratio * size
# random size
h = np.random.randint(mini[0], maxi[0])
w = np.random.randint(mini[1], maxi[1])
# random place
shift_h = np.random.randint(0, size[0] - h)
shift_w = np.random.randint(0, size[1] - w)
X = X[shift_h:shift_h+h, shift_w:shift_w+w]
Y = Y[shift_h:shift_h+h, shift_w:shift_w+w]
return X, Y
class CustomFilter(object):
def __init__(self, kernel):
self.kernel = kernel
def __call__(self, X, Y):
X = cv2.filter2D(X, -1, self.kernel)
return X, Y
class Sharpen(object):
"""
锐化
"""
def __init__(self, max_center=4):
self.max_center = max_center
self.identity = np.array([[0, 0, 0],
[0, 1, 0],
[0, 0, 0]])
self.sharpen = np.array([[ 0, -1, 0],
[-1, 4, -1],
[ 0, -1, 0]]) / 4
def __call__(self, X, Y):
sharp = self.sharpen * np.random.random() * self.max_center
kernel = self.identity + sharp
X = cv2.filter2D(X, -1<