搁置了几天,又翻几页《SICP》,这次引起思考的是斐波拉契数列。
定义Fib(n)=Fib(n-1)+Fib(n-2),而Fib(0)=0,Fib(1)=1。
列举有:0,1,1,2,3,5,8,13,21……
书上说这一列数满足Fib(n)是最接近的整数,其中。
很容易由该数列的性质()得到,另一个解小于0,明显不符合性质,所以得到了验证。
但是除数是怎么产生的呢?
查了资料后发现是由其通项公式(称为比内公式)自然产生的,关于这部分略过。
再来考虑非以0,1开头的类Fib数列,记Fib(0)=a,Fib(1)=b,则有:a,b,a+b,a+2b,2a+3b,3a+5b,5a+8b,……
很明显a、b分别以标准Fib增长,故有:
标准Fib有一个有趣的定理: