遗传拓扑神经网络---Neat

本文介绍了遗传拓扑神经网络(Neat算法),一种结合神经网络和遗传算法的模型,用于优化网络结构。文章包括算法原理、交叉与变异操作、实验环境和案例,以及配置文件解释。遗传拓扑神经网络适用于强化学习等领域,通过适者生存的原则进行网络优化。
摘要由CSDN通过智能技术生成

本期课程到这里,博主就默认大家已经对BP、CNN、RNN等基本的神经网络属性以及训练过程都有相应的认知了,如果还未了解最基本的知识,可以翻看博主制作的深度学习的学习路线,按顺序阅读即可。

深度学习的学习路线:往期课程

    

        Hello,又是一个分享的日子,之前博主给大家介绍了遗传演化神经网络,这期博主将在本期推文给大家介绍遗传拓扑神经网络遗传拓扑神经网络同样是结合了神经网络和遗传算法与进化策略产生的一种全新模型。它通过模仿自然界“适者生存”的原则来赋予神经网络在代际循环中优化的力量,能有效克服传统神经网络在训练过程中的缺点。它与上期介绍的遗传演化神经网络不同的地方在于加入了交叉操作,且它的年代比较久远了,是2003年的一篇论文,因为近些年来算力的提升与强化学习的兴起,又走进了人们的视野。好了,闲言少叙,我们这就走进遗传与深度学习的世界。

Neat算法的论文

《Evolving Neural Networks through Augmenting Topologies 》

提取码:yxph

https://pan.baidu.com/s/1SmMEsgSMEdUwnhvsmwfnPg&shfl=sharepset

本文内容概要:

  1. 遗传拓扑神经网络(Neat算法)原理

  2. 遗传拓扑神经网络(Neat算法)实验

  3. 实验总结

  4. 新的征程---NLP修炼指北

遗传拓扑神经网络的思想

 原理                                                                                     

        正如之前的遗传演化神经网络的推文所说,遗传算法是个通用框架,因此我们需要根据具体的问题来定义遗传算法。不过,既然它是框架,那它就会有通用的几部分供我们选择,因此博主在此给大家先讲下整体的流程。

    整体框架可分为三部分:交叉、变异与适应度。不过虽然整体的流程是一致的,但是因为问题不同,我们定义的基因也有所不同,那交叉与变异也会随之变化。

    这篇论文将神经元及其连接定义成基因组,而遗传演化神经网络论文是将网络层及

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值