离散数学及其应用 第三章:命题逻辑

本文深入解析命题逻辑的基础概念,包括命题、原子命题、复合命题及其联结词的使用。详细阐述了命题公式、公式的标准型,以及如何构建析取范式和合取范式。并介绍了命题变元、极小项、极大项的概念及其编码方式。

命题

具有确切真值陈述句称为命题

原子命题

不能再分解为更简单命题的命题

复合命题

可以分解为更简单命题的命题

命题联结词

联结词记号
否定 ¬ \neg ¬
合取 ∧ \land
析取 ∨ \lor
蕴含 → \to
等价 ↔ \leftrightarrow

注意这里的顺序也就是联结词的优先级哦,依次是:否定、合取、析取、蕴含、等价

联结词的难点

联结词别的都还好,主要是蕴含联结词( → \to ),超级容易出错,下面举几个例子

  1. 如果周末天气晴朗,那么学院将组织我们到石像湖春游
    如果A那么B,写成联结词的形式就是A → \to B,表示条件成立,则一定要做什么,如果条件不成立,则可做可不做,从蕴含联结词的真值表可以看出。
  2. 只有明天不是雨夹雪,我才去学校
    只有A才B,这种不能写成A → \to B,因为我们可以这么想,我只要去了学校,那么明天肯定不是雨夹雪,如果是A → \to B的形式,那B成立,A可以成立,可以不成立,显然这是不正确的。应写为B → \to A
  3. 除非你陪伴我或代我叫车,否则我将出不去
    除非···否则不···,表示如果前件不发生,我一定不做什么;或者说如果我做了什么,前件一定发生,其实和只有才一样,是B → \to A的形式

需要注意以下几点:

  1. 联结词“ ¬ \neg ¬”是自然语言中的“非”“不”和“没有”等的逻辑抽象
  2. 联结词“ ∧ \land ”是自然语言的“并且”“既···又···”“但“”和”等概念抽象
  3. 可兼或( ∨ \lor )不可兼或( ∨ ˉ \bar{\lor} ˉ),后者是 ¬ ( A ↔ B ) \neg(A\leftrightarrow B) ¬(AB)的简写

命题公式

生成规则:

  1. 命题变元本身是一个公式
  2. 如果 G G G是公式,则( ¬ G \neg G ¬G)也是公式
  3. 如果 G , H G,H G,H是公式,则( G ∧ H G\land H GH),( G ∨ H G\lor H GH),( G → H G\to H GH),( G ↔ H G\leftrightarrow H GH)也是公式
  4. 仅通过有限步地使用规则1,2,3所得到的符号串才是命题公式

命题公式的分类

  1. 永真公式(重言式)
  2. 永假公式(矛盾式)
  3. 可满足式

基本等价关系

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

联结词的完备集

需要新学习几个联结词:与非 ↑ \uparrow 、或非 ↓ \downarrow 从字面意思就可以理解是A和B先进行与或者是或运算再取否定

  1. 对于任一个命题公式,都有S中的联结词所表示出来的命题公式与之等价,则称S是完备的联结词集合,或者说S是联结词的完备集
  2. 对于一个完备的联结词集合S,从S中任意删去一种联结词后,得到一个新的联结词集合 S 1 S_1 S1,至少有一个公式不等价于仅包含 S 1 S_1 S1中联结词所表示的任一公式,则称S为最小完备的联结词集合

公式的标准型—范式

析取范式和合取范式

  1. 命题变元或命题变元的否定称为文字
  2. 有限个文字的析取称为析取式,也称为子句
  3. 有限个文字的合取称为合取式,也称为短语
  4. 有限个短语的析取式称为析取范式
  5. 有限个子句的合取式称为合取范式

极大项和极小项

每个命题变元和它的否定不同时存在,但二者之一恰好出现,并且只出现一次,这样的短语称为极小项,这样的子句称为极大项.

极大项与极小项的编码

使极小项真值为1的那组真值指定为极小项的编码,命题变元与1对应,命题变元的否定与0对应
使极大项真值为0的那组真值指定为极大项的编码,命题变元与0对应,命题变元的否定与1对应
任意两个不同的极小项的合取必为0,任意两个不同的极大项的析取必为1.

写主析取范式

若析取范式的某一个短语中缺少该命题公式中所规定的命题变元,如缺少 P P P,则可用公式:
( ¬ P ∨ P ) ∧ Q = Q (\neg P\lor P)\land Q=Q (¬PP)Q=Q
若合取范式的某一个短句中缺少该命题公式中所规定的命题变元,如缺少 P P P,则可用公式:
( ¬ P ∧ P ) ∨ Q = Q (\neg P\land P)\lor Q=Q (¬PP)Q=Q
利用真值表技术求主析取范式时,找真值为1的,求主合取范式时,找真值为0的.

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值