MCM/ICM常用工具
统计分析工具
-
Excel
不提了大家都用过。要掌握最基本的插入删除、其余语言read、write、排序、筛选等等。 -
Matlab
-
数模必备,里面的toolbox的神经网络对非计算机科班出身学子较为有效。
-
但软件较大,且运行时间较长,卡卡卡卡是很常见的事情。部分学子可能因学校原因无法使用,那不如入我大python坑?(笑)
-
-
Python
-
同数模必备,python与matlab至少要会一门,最好是另一门也要有一定了解,不同语言有利于处理不同的问题,熬夜肝代码的时候可以救命。
-
如果是科班出身可以使用sklearn/tensorflow/pytorch等工具,通过ml或神经网络进行预测(仅限美赛,其余比赛尚未有类似经验)。
-
在无法找到数据的时候可以import request或Selenium在网页上爬取,但需要一定的计算机网络知识。
-
-
SPSS
世界上最早的统计分析软件。要收费。 -
R
较为主流的主打统计分析的语言(我一般用于计算概率相关问题),也有靠R语言拿到美赛奖项的案例。
作图工具
- Origin
专业的数据绘图软件,科学工作者常用的专业绘图软件,上手较难。 - Tableau
一款做图软件,需要付费。可做大部分数据分析图表。搭配Mapbox可以做出非常漂亮的地图。
官网:https://www.tableau.com(可学习查看文档) - PS
万能photoshop,做很多非数据分析图表的时候有很大用处。不过要收费。 - PPT
仔细挖掘PPT的插入功能有惊喜。比如有一次打数模的时候有一个货物分配问题,要基于题里的图来来画移动路线,在这个时候PPT=photoshop(笑) - Panoply
NASA基于JAVA开发的气象出图软件,直接处理grib数据和netCDF数据。
- Echarts
使用 JavaScript 实现的开源可视化库,可以做出各行业图表。需要有一丢丢的计算机语言基础,能看懂网页源码就行。也有python版本的pyecharts。
官网:https://echarts.apache.org/zh/index.html
论文工具
- Word
大家都懂,就是排版比较麻烦。所以很多MCMer倾向使用latex。 - Latex
美赛必备工具,在排版中文论文的时候要加一些packages比如CJK。但需要一定时间学习latex工具语言,具体配置和学习可以参考各位优秀博友的教程。
最后上个20年拿到的F奖图片,祝美赛选手们O气十足!