Union Find 和一道谷歌面试题

本文回顾了作者在谷歌面试中遇到的Union Find问题,详细解释了Union-Find数据结构及其Python实现,包括find()和union()操作。通过复习Stanford的Algorithm Specialization课程和相关教程,作者深化了理解。同时,分享了一道LeetCode面试题,题目要求求解图中不连通组件的数量,通过Union Find可以有效地解决这个问题。
摘要由CSDN通过智能技术生成

复习经历

继续按照主题刷题。最近一次的中心内容是 union-find 这种数据结构。选择它的原因是我在一次谷歌面试中被问到了这个题,而且当时没有回答出来,这就刺激了我一定要把 union-find 搞懂的愿望。我并不是完全不懂这个数据结构,在斯坦福在 Coursera 中的 Algorithm Specialization 里 Tim Roughgarden 教授讲过的,我也动手实现过。只是这段经历已经很遥远,而且在那之后再也没有用到过这种数据结构,所以没有机会复习。

把 union-find 放入正题对待以后,我首先做的就是回去把 Algorithm Specialization 里的讲课视频再看了一遍。这个课是要付费的,但是有免费的 preview, 用谷歌搜索视频“stanford union find” 就能够找到。课堂里是在讲述如何实现 Krugal’s Algorithm, 而 union-find 恰好是一种很契合的实现方式。Tim 老师简单介绍了一下这种数据结构,不过这些就够用了。不光够实现 Krugal’s Algorithm, 攻破谷歌的面试题也可以的。

在正式刷题之前,我又看了几篇教程文章,其中 有一篇 通过一系列数组的图片把概念解释得很清楚。union find 也叫 disjoint set union,一个整体被分成了若干不相交的部分。总体上来说,这个数据结构就是在维护一个元素间有从属关系的数组,它有两个基本方法:

  1. find(x), 找到元素 x 的根节点,通常在 union find 维护的数组中,元素是作为索引的形式存在,索引对应的值是它父亲的索引;这个 find() 方法就是递归地寻找父亲,直到某个节点的父亲是自己,就返回这个节点
  2. union(x,y), 联合元素 x 和 元素 y,即把 x 和 y 所属的部分并起来,实现方法就是找到 x 和 y 各自的根节点,让其中一个根节点依附于另一个

Union-Find 的样例 Python 实现

class UnionFind:
    def __init__(self, n):
        self.arr = [i for i in range(n)]
        self.n = n
        self.size = n

    def find(self, x):
        if x >= self.n:
            return -1
        if self.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值