When Machine Learning Meets Congestion Control: A Survey and Comparison

机器学习邂逅拥塞控制:一个对比性研究

论文简介:此论文是一篇综述性的文章,通过阅读本论文可以对拥塞控制算法有一个较为清晰的认识,区分传统算法及辨识各种传统算法的优劣,特别是本文通过导引的方式可以让读者了解机器学习在拥塞控制算法中的应用现状,对应该使用哪种机器学习的方法给读者指明了方向,并使得读者认识到应用RL在CC中的优劣势及面临的挑战。
When Machine Learning Meets Congestion Control: A Survey and Comparison

摘要:

主要介绍机器学习目前跨学科的应用和激增趋势。随后介绍本文的创新点和贡献为:
1.对于基于机器学习的拥塞控制进行了详细的总结和比较。
2.与基于规则(Rule-based)相比是十分可取的。
3.并从一些文献中得出结论强化学习(RL)是一个主要趋势。
4.本文探讨了基于RL的CC算法的性能,并提出这种算法目前存在的问题。
5.概述了基于RL的CC算法相关的挑战和趋势 。

1 导言

数据中心(DCs)、WiFi、5G和卫星通信(satellite communications)、网络传输场景和协议的复杂性和多样性急剧增加给传输协议的设计带来了巨大的挑战,由此而产生了丰富多样的拥塞控制算法(Congestion contro CC)。
然而网络场景的多样性网络内部的动态结构使得设计高效的CC算法异常困难。
因此,基于ML的CC算法提出了一种通用的CC机制可以支持不同的网络场景。
文章主题:对传统CC进行背景分析;在此基础上,研究了ML在CC领域的应用现状和面临挑战。

A 传统的CC

传统的CC算法可分为两大类 end-to-end CC(端到端的拥塞控制)and network-assisted CC(网络辅助的拥塞控制):
1.end-to-end
引用了文献:
[3]The newreno modification to tcp’s fast recovery algorithm
[4]TCP vegas: New techniques for congestion detection and avoidance
[5]Tcp new vegas: improving the performance of tcp vegas over high latency links in Fourth IEEE International Symposium on Network Computing and Applications. IEEE, 2005, pp. 73–82
对于端到端的拥塞控制,其主要挑战为从隐式会话信号(implicit session signals)中识别网络拥塞。隐式会话信号包括丢包传输延迟
端到端的拥塞控制主要被区分为三种:基于丢包的拥塞控制(loss-based CC),基于延迟的拥塞控制(delay-based CC),和混合拥塞控制(hybrid CC)。

1.2 loss-based CC
调整发送者在给定时间内没有收到相应的确认(ACK)时的发送速率,这通常被认为是数据包丢失。 当给定网络设备中的缓冲区超载时,就会发生损失,因此基于丢失的方法应该通过高带宽利用率来获得高吞吐量。 但是对于一些对延迟敏感的应用程序,无法保证较低的传输时间。 此外,网络拥塞(如随机丢包)可能不会触发丢包,这可能会误导任何CC决策。
参考文献
[9]Highspeed TCP for large congestion windows
[10]TCP hybla: a TCP enhancement for heterogeneous networks
[11]Binary increase congestion control (BIC) for fast long-distance networks
1.3 delay-based CC
基于延迟的方法依赖于检测到的传输延迟由网络引起的跨任务延迟。 与基于丢失的方法相比,基于延迟的方法更适合于高速和灵活的网络,如无线网络,因为它们不受随机丢包的影响。 然而,计算准确的传输延迟仍然是一个重大挑战。 如主机堆栈中分组处理时间的轻微变化可能会导致测量的传输延迟的偏差,导致与发送速率相关的错误决策。
参考文献
[12] Fast tcp: From theory to experiments IEEE network, vol. 19, no. 1, pp. 4–11, 2005.
[13] Tcp lola: Congestion control for low latencies and high throughput in 2017 IEEE 42nd Conference on Local Computer Networks (LCN). IEEE, 2017,pp. 215–218.
[14] Timely: Rtt-based congestion control for the datacenter in ACM SIGCOMM Computer Communication Review, vol. 45, no. 4. ACM, 2015, pp. 537–550.
1.4 hybrid CC
为了充分利用丢包和延迟策略的优点而提出了混合方法,虽然这些方法不能准确地确定网络状态与丢包和传输延迟有关的隐式信号
参考文献
[15]TCP veno: TCP enhancement for transmission over wireless access networks
[16]Tcp-africa: an adaptive and fair rapid increase rule for scalable TCP
[17]A compound TCP approach for high-speed and long distance networks
2. network-assisted
引用了文献:
[6]Random early detection gateways for congestion avoidance
[7]Analysis and design of an adaptive virtual queue (AVQ) algorithm for active queue management
[8]Congestion control for cross-datacenter networks
为了解决不能准确地确定网络状态与丢包和传输延迟有关的隐式信号这个问题,网络辅助的拥塞控制提出了[18],[19]中的方法, 其中,网络设备提供与网络状态相关的显式信号,供主机进行发送速率决策:
[18]A proposal to add explicit congestion notification (ECN) to IP
[19]EMPTCP: an ECN based approach to detect shared bottleneck in MPTCP
当网络设备拥塞时,一些数据包将被标记为信号——显式拥塞通知(explicit congestion notification ECN)。 接收方将在ACK中发送ECN信号,发送方将附加相应地发送速率。 在[20]中采用了拥塞的ECN信号。 为了进一步提高CC的性能,在[21]中采用了用于拥塞的多级ECN信号,这提供了粒度更精细的CC。
[20]Improving ECN marking scheme with microburst traffic in data center networks
[21]Enabling ECN for datacenter networks with RTT variations
随着大量新技术和网络的出现,例如DCs(data centers)、WiFi、5G和卫星通信,网络传输场景的复杂性和多样性的急剧增加,给CC带来了重大挑战。虽然传统的CC方法在一个场景中可能很好地工作,但它们可能不能保证在不同的网络场景中的性能。 除此之外,一个网络场景中不断变化的流量模式也可能影响解决方案的性能,因此我们需要一种智能CC方法。

B 基于学习的拥塞控制

网络场景的动态性多样性复杂性给CC带来了重大挑战。 比如,很难为所有网络场景设计通用方案。此外,即使是相同网络的动态特性也会使CC的性能不稳定。当前的网络环境也可能包括有线网络和无线网络,这使得丢包检测更加困难。
参考文献:
[22]Improving tcp in wireless networks with an adaptive machine-learnt classifier of packet loss causes in International Conference on Research in Networking. Springer, 2005,pp. 549–560.
[23]Enhancement of tcp over wired/wireless networks with packet loss classifiers inferred by supervised learning Wireless Networks,vol. 16, no. 2, pp. 273–290, 2010.
[24]Bayesian packet loss detection for TCP
基于学习的方案是基于实时网络状态来做出控制决策,而不是使用预设的规则。这使他们能够更好地适应动态和复杂的网络场景
基于不同的机制,基于学习的CC算法可以分为两组:绩效导向(performance-oriented)的CC算法和数据驱动(data-driven)的CC算法。 绩效导向的CC算法采用目标优化方法对模型进行训练得到输出。通常,这种算法需要手动确定效用函数中的参数。学习过程应该收敛于效用函数的最优值。
有一些典型的绩效导向的CC算法如:
Remy
[25]TCP ex machina: computergenerated congestion control
Remy是绩效导向的CC算法中的一个早期版本,其效用函数包括吞吐量和延迟。 为了最大化效用函数的期望值,Remy找到了基于预先计算的查找表的映射。 然后,估计相应的发送速率。
PCC and PCC Vivace
PCC和PCC Vivace表现出良好的性能,在设计效用函数的基础上这些功能涵盖了诸如往返时间(RTT)等基本性能指标。
[26]PCC:re-architecting congestion control for consistent high performance
[27]PCC vivace: Online-learning congestion control
GCC
GCC采用卡尔曼滤波方法,利用线性系统状态方程通过观测数据对系统状态进行最优估计。 基于卡尔曼滤波,GCC估计端到端的单向时延变化,动态控制发送速率
Copa
Copa通过优化基于当前吞吐量分组延迟的目标函数来调整发送速率。 与上述绩效导向的CC算法相比,数据驱动的CC算法更依赖于数据集,并存在收敛性问题。 然而,由于数据驱动的CC算法基于当前数据更新其参数,而不是依赖于给定的常数参数, 它们通过学习表现出更强的适应性,满足不同的网络场景。 此外,主流研究更多地集中在数据驱动的CC算法上。在本文中,我们的重点也是数据驱动的CC算法。
在数据驱动的CC算法方面,采用机器学习技术对模型进行了训练,包括监督学习技术、无监督学习技术和RL技术。 监督和无监督学习技术已被广泛应用于改进网络CC。
[22]Improving tcp in wireless networks with an adaptive machine-learnt classifier of packet loss causes in International Conference on Research in Networking. Springer, 2005,pp. 549–560.
[30]End-to-end inference of loss nature in a hybrid wired/wireless environment
然而,这些方案仅部分成功,因为它们是离线训练的,并且不能对实际的无线和拥塞丢失进行分类[23]。
[23]Enhancement of tcp over wired/wireless networks with packet loss classifiers inferred by supervised learning Wireless Networks,vol. 16, no. 2, pp. 273–290, 2010.
在具有动态和复杂状态空间的网络中,RL在处理实际的拥塞方面具有更大的优势 [31],[32]。
[31]Experience-driven networking: A deep reinforcement learning based approach in IEEE INFOCOM 2018-IEEE Conference on Computer Communications. IEEE, 2018, pp. 1871–1879.
[32]Dynamic TCP initial windows and congestion control schemes through reinforcement learning
因此,RL技术已被证明有利于CC,因为它更高的在线学习能力[33],[34]。
[33]A deep reinforcement learning perspective on internet congestion control
[34]Tcp-drinc: Smart congestion control based on deep reinforcement learning
目前,许多研究都集中在基于RL的CC方案上。
然而,基于学习的CC仍处于起步阶段。 大多数基于学习的CC算法通过调整拥塞窗口(CWND)来控制发送速率,而不是直接调整发送速率。 因此,在高速网络中,突发(burstiness)仍然是一个问题,因为当多个ACK到达时,CWND会急剧增加[35]。
[35]Advances in internet congestion control
目前基于学习的CC算法,如[36],[37]通常集中在端到端CC,而不是网络辅助CC。
[36]QTCP: adaptive congestion control with reinforcement learning
[37]Internet congestion control via deep reinforcement learning
设计一个通用的基于学习的CC方案,可以在实际的网络场景中工作,仍然是学术界和工业界的一个主要目标。

C 总体分析

除了考虑当前基于学习的CC算法,并提供系统的分析和比较, 我们在不同的动态网络场景下对基于学习的CC进行了全面的实验,并与更传统的算法进行了比较。 基于学习的CC算法在实际网络栈中的实现表明,它们往往是有所欠缺的的,因为智能学习决策不是足够快。即在100毫秒的顺序下,GPU具有1GB的实际网络数据传输。 因此,为了判断决策模型的利弊,我们使用NS3仿真器对各种方案进行了综合实验[38]。
[38]ns3-gym: Extending openai gym for networking research
在仿真中,我们将基于RL的深度Q学习(DQL)[39]、近似策略优化(PPO)[40]和深度决定策略梯度(DDPG)[41]的CC算法与传统CC算法NewReno[42]进行了比较。
[39]A deep reinforcementlearning based congestion control mechanism for NDN
[40]Reinforcement learning-based variable speed limit control strategy to reduce traffic congestion at freeway recurrent bottlenecks
[41]Self-learning congestion control of mptcp in satellites communications in IWCMC 2019, 2019.
[42]The newreno modification to tcp’s fast recovery algorithm

我们设计了三种不同的场景,具有不同的带宽和延迟配置。 高带宽,低时延的网络模拟一个典型的数据中心网络。 低带宽,高时延的网络模拟典型的广域网。 低带宽,低时延的网络模拟自组织无线网络。 这三种网络环境代表了基于学习的CC算法所需的不同环境。 为了充分评估基于学习的CC方案的性能, 我们生成网络流量跟踪,80%的大象流(长流)和20%的老鼠流(短流)进行实验。 实验结果表明,基于学习的CC算法更适合于带宽延迟乘积(Bandwidth Delay Product BDP)较高的动态环境。 对于低BDP的网络,即 链路带宽低或链路延迟低, 基于学习的CC算法过于激进,无法稳定地学习和处理动态网络。 此外,由于环境复杂性有限,这三种基于学习的CC算法的性能在我们的模拟环境中没有任何差异。 因此,它们都可以处理这些网络场景。
在实际场景中,基于RL的CC算法受到RL所需计算时间的影响。这影响了这些计划的可行性。 因此,我们提出了三种潜在的解决方案来处理这个问题。 首先,设计基于状态和动作映射表的轻量级模型,以减少学习决策的时间消耗。 其次,降低决策频率,在低动态网络场景下提供更好的可行性。 最后,异步RL可以提高基于RL的CC算法的决策速度。
在此基础上,我们进一步探讨了基于学习的CC领域未来工作的挑战趋势。 基于学习的CC算法目前面临的挑战主要集中在参数选择计算复杂度高内存消耗高培训效率低难以收敛和不兼容等工程相关问题上。 在未来,基于学习的CC需要得到学术界和工业界更多的关注。基于对当前基于学习的CC解决方案的理解和分析, 我们确定了基于学习的CC的趋势首先,由于它们具有处理动态和复杂状态空间网络拥塞的能力, 基于RL的CC将是一个重要的研究趋势。 第二,鉴于学习决策的时间和成本过高, 基于轻量级学习的CC将是一个关键的研究方向。第三一个开放的网络测试平台,提供大规模差异化的动态网络场景,以支持基于学习的CC机制的探索和验证, 需要在基于学习的CC算法的研究中做出进一步的贡献。
论文的其余部分结构如下。 在第二节中,我们介绍了相关的背景知识。 在第三节、第四节和第五节中,我们分别将基于监督学习的CC算法、基于无监督学习的CC算法和基于RL的CC算法作为三组主要的基于学习的CC算法的代表。 在第六节中,我们概述了模拟的设置。 在第七节中,我们对基于RL的CC算法和传统CC算法进行了仿真比较。 在第八节中,我们概述了基于学习的TCP的挑战和趋势。 最后,在第九节中,我们总结了这篇论文。

2 背景

CC机制

CC机制通常涉及四个关键问题:慢启动、避免拥塞、重传和快恢复[43]。
[43]TCP congestion control
为了说明CC的过程,我们采用了基于窗口的CC。 滑动CWND确定下一个要发送的数据包。
慢启动
避免拥塞
重传
快恢复
此处略去关于慢启动、避免拥塞、重传和快恢复理论的介绍。下面是这四个阶段中比较重要的窗口更新公式:
CWNDt+1 = CWNDt + SMSS ∗ SMSS / CWNDt (1)
SMSS是发送方的最大段包大小。 随着每个ACK的到来,CWND将有一个小的增长,总体增长率将略有非线性。

B 拥塞控制算法的速率调整机制

为了控制输入数据的发送速率,CC算法有三种速率调整机制:基于窗口的技术基于速率的技术和Pacing
基于窗口的策略直接调整CWND。 CWND反映了网络的传输容量。 发送方的实际窗口是CWND和接收方窗口中选择的较小的窗口。 考虑到基于窗口的策略的便利性, 有多种传统的CC算法,如经典算法DCTCP[35]。虽然基于窗口的技术是高效的,但突发性(burstiness)是一个大问题,特别是在高带宽的网络中。 当一堆ACK到达时,CWND将急剧增加。 因此,基于窗口的策略会导致变化、低吞吐量和高延迟。
[35]Advances in internet congestioncontrol
基于速率的策略直接控制实际发送速率,因此,他们能够充分利用带宽而不突发(burstiness)。 有许多基于速率的策略。在 [44]中,提出了一种基于速率策略的早期版本,用于控制异步传输模式(ATM)服务中的拥塞。 [45]将控制理论与基于速率的策略相结合,处理连续时间网络中的流量控制。 然而,由于基于速率的策略依赖于预先设计的规则,这些规则可以在每个间隔内进行调整,因此与基于窗口的策略相比,响应度相对较低。 此外,基于速率的复杂策略往往比较耗费资源。
[44]The rate-based flow control framework for the available bit rate atm service IEEE network, vol. 9, no. 2, pp.25–39, 1995.
[45]A control-theoretic approach to flow control
什么是Pacing?
Pacing uses the tcp window to determine how much to send but uses rates instead of acknowledgments to determine when to send.

因此,一种基于packet pacing的混合策略[46]被提了出来。 packet pacing是确认驱动的,这类似于基于窗口的策略。 因此,响应能力得到保证。 此外,基于packet pacing策略,发送器可以在给定的时间间隔内分配传输任务,从而避免突发(burstiness)。 在[47]中,packet pacing策略被证明可以避免由于密集到达的ACK引起的突发(burstiness)。 然而,在某些网络场景中,包括TCP通信的初始周期,packet pacing在吞吐量和公平性方面表现得更差[48]。
[46]Observations on the dynamics of a congestion control algorithm: The effects of twoway traffic
[47]The effects of asymmetry on TCP performance
[48]Understanding the performance of TCP pacing
如上所述,不同的调整策略可以满足多样化的网络场景。 在传统的CC算法中,大多数算法都是基于窗口的。 随着CC算法的发展,越来越多的基于速率和packet pacing的CC算法被设计出来。 根据文献得到,大多数基于学习的CC算法都采用基于窗口的CC算法。

C 拥塞控制算法的性能度量

CC算法被期望实现各种目标和目的,如表I所示。

表 I
基于学习的CC算法的目标
目标 描述
最大化吞吐量 为了最大化吞吐量,带宽利用率应该很高。 高吞吐量与低RTT或流量完成时间相矛盾,因为高吞吐量意味着环境容忍高队列长度,这可能会造成长时间的延迟。
尽量减少RTT或流完成时间 基本要求。 对于每个任务,流程完成时间反映延迟,延迟应该尽可能小。
最小化丢包率 基本要求。低丢包率意味着网络环境稳定,时延低。
公平 公平对于多个用户来说很重要。 资源分配应尽可能在用户之间公平,并考虑不同的应用程序
响应能力 更新CWND的频率和调整策略会影响算法的响应能力。 预期反应能力高,这也意味着资源消耗高。 因此, 响应需要基于不同的场景进行平衡。

作者接下来介绍了相关的目标
吞吐量 Throughput
往返时间RTT
数据包丢失率packet loss rate
公平性Fairness
响应能力Responsiveness
这些目标对于所有CC算法都很重要,但它们很难实现。为某些目标取得好的表现,可能意味着必须牺牲其他目标。 在不同的情况下,目标也可能有不同的优先级,因此必须进行权衡。 基于以往的文献,不同的CC研究侧重于不同的性能方面,包括:吞吐量、RTT和丢包率。 在我们的模拟中,我们详细测量了这三个参数。

3 基于监督学习的拥塞控制算法

在这一部分中,我们介绍了基于监督学习的CC算法。 监督学习技术训练给定的样本以获得最优模型,然后使用该模型将所有输入映射到相应的输出。 通过对输出及其实现分类的能力进行判断,监督学习技术具有执行数据分类的能力。 经典的监督学习方法包括决策树随机森林贝叶斯回归神经网络
在网络领域,采用监督学习方法预测端到端网络的拥塞信号,并对网络辅助网络的队列长度进行管理。 拥塞信号预测包括损失分类( loss classification)和延迟预测。 如前所述,当传统CC算法发生拥塞时,基于丢包或延迟隐式检测拥塞。 在基于监督学习的CC算法中,基于当前和以前的网络状态,如队列长度网络延迟,预先估计拥塞。 这种方法的关键基础是网络状态形成一个连续的时间序列,其中未来的状态可以通过过去的状态来预测。 通过这一点,与传统的CC算法相比,基于监督学习的CC算法可以更加智能一些。

A 端到端网络中的拥塞检测

1)损失分类(Loss Classification):损失是用于检测拥塞的关键但间接的信号。 只有当拥塞已经发生时,它才会给网络中的节点反馈。 此外,基本损失的CC算法无法区分丢包的原因。 因此,损失的分类对于理解CC是必不可少的。
无线网络提供了许多经典场景,以区分无线损耗和拥塞损耗。 在无线网络中,损失可能是由错误的无线链路用户移动信道条件和干扰造成的。 在传统CC算法的基础上,有大量对无线网络中的损失分类进行的研究。在[49]中,该算法(Biaz)利用分组到达时间对无线丢失和拥塞丢失进行分类。 如果分组到达时间限制在一个范围内,则丢失的分组是由于无线丢失而丢失。 否则,损失被认为是拥塞损失。在 [50]中,采用一种新的设计相对单向行程时间损失分类器(ROTT)来区分损失类型。 如果ROTT的连接相对较高,则损失应该是由拥塞引起的。 在其他情况下,损失被假定为无线损失。 在[51]中,使用损失数量和ROTT来区分损失类型。 该算法提供了一种比上述两种算法更有效的混合算法ZigZag。
[49]Discriminating congestion losses fromwireless losses using inter-arrival times at the receiver in Proceedings 1999 IEEE Symposium on Application-Specific Systems and Software Engineering and Technology. ASSET’99 (Cat. No. PR00122). IEEE,
1999, pp. 10–17.
[50]Achieving moderate fairness for udp flows by path-status classification in Proceedings 25th Annual IEEE Conference on Local Computer Networks. LCN 2000. IEEE, 2000, pp. 252–261.
[51]End-to-end differentiation of congestion and wireless losses
这些损失分类器在某些特定场景中是有效的,但有其局限性。 Biaz[49]适用于无线最后一跳拓扑,而不是具有竞争流的无线瓶颈链路,而Spike[50]在具有多个流的无线主干拓扑中表现出更好的性能。ZigZag[51]相对更通用,因此能够满足不同的拓扑场景,但是它对发送速率很敏感。
考虑到传统的无线网络损失分类器的局限性,监督学习技术提供了几个优点。 为了充分理解损失信息,可以考虑多个参数。在 [22]中,采用单向延迟和分组间时间作为状态来预测损失类别。 [23],排队延迟、到达时间和数据包列表被用作输入。 此外,还应用了各种监督学习技术。 [52]采用决策树决策树组合装袋算法(Bagging算法 Bootstrap aggregating 引导聚集算法)、随机森林极端随机树(ET或Extra-Trees(Extremelyrandomized trees,极端随机树))、提升方法(Boosting 是一种可以用来减小监督式学习中偏差的机器学习算法)和多层感知器对损失类型进行分类。仿真表明,这些智能损失分类器在不同的网络场景下实现了较高的精度。
除了无线损失外,争用损失在光突发交换(OBS)网络中也很常见。 光突发交换提供了一种先进的网络,由于保留了波长而节省了资源。 然而,由于OBS中缺少缓冲区,当核心节点出现突发( burst)时,会产生争用损失。 有一些基于监督学习的CC算法旨在解决这一问题。在文献[53]中,讨论并测量了一些经典的竞争解决方案,包括波长转换偏转路由选择共享反馈光纤延迟线缓冲。 为了衡量这些策略的有效性,考虑了突发丢失概率和突发概率。这些策略在OBS争用问题上表现出良好的性能。 在文献[54]中采用隐马尔可夫模型分别对竞争损失、拥塞损失和控制拥塞进行分类。仿真结果表明了损失分类器在不同网络场景下的有效性。
[52]A machine learning approach to improve congestion control over wireless computer networks
[53]Comparison of contention resolution strategies in obs network scenarios in Proceedings of 2004 6th International Conference on Transparent Optical Networks (IEEE Cat. No. 04EX804), vol. 1. IEEE, 2004, pp. 18–21.
[54]Loss classification in optical burst switching networks using machine learning techniques:
improving the performance of TCP

在具有多信道路径的网络中,重排序损失是不可忽略的。 在网络中,当数据包被重新排序时,重新排序损失就发生了。 基于监督学习的CC算法能够处理相关的分类问题。 在文献[55]中,无序传递会导致RTT的变化。 因此,与重排相关的RTT和与拥塞相关的RTT表现出不同的分布。在文献 [24]中,用贝叶斯算法表示两种损失的RTT分布。 该算法具有较高的预测精度。
[55]End-to-end internet packet dynamics
综上所述,无线丢失、竞争丢失和重排序丢失会影响拥塞丢失的检测。 监督学习技术显示了在不同网络场景中对损失类型进行分类的优势。其机制如图1和表II所示,总结了基于监督学习方法的丢失分类器的研究。 然而,这些基于监督学习的CC算法存在一些问题。
Loss Classification Based on Supervised Learning Algorithms

图1 基于监督学习算法的损失分类

表 II
监督学习:端到端CC算法中的丢失分类
算法 场景 输入 输出
决策树促进(Decision Tree Boosting) 无线网络 单向延迟,包间时间 链路丢失或拥塞丢失
贝叶斯 具有重排事件的网络 丢失数据包的RTT 重新排序丢失或拥塞丢失
隐马尔可夫模型 光突发交换(OBS) 在任意两个脉冲之间的出口处成功接收到的脉冲数 竞争损失或拥塞损失
DT,装袋,Boosting,神经网络 无线网络 排队延迟,包间到达时间,分组列表 无线丢失或拥塞丢失
决策树,决策树集合,装袋,随机森林,极端树,升压,多层感知器,K-最近邻 无线网络 标准差、最小值和最大值的单向延迟、包间时间 无线丢失或拥塞丢失

错误分类是一个问题。 在无线网络中,预定义的参数决定了拥塞损失和无线损失分类的误差。 如果拥塞丢失比无线丢失更容易分类,则分类器在无线网络中表现出不良的性能,因为当检测到丢失时,网络应该做出反应。 然而,由于分类错误,网络将拥塞丢失视为无线丢失,不能快速控制发送速率。 因此,拥塞无法减少。 否则,如果无线丢失更容易被归类为拥塞丢失,则该算法在无线场景中是无效的,因为存在相当大的无线丢失。 因此,无线网络可能对丢失信号反应过度。 因此,需要仔细考虑算法中的参数,以平衡不同网络场景下的性能。 计算复杂度预测精度之间的平衡是另一个问题。 如在文献[52]中,与决策树相比,Boosting算法获得了更高的精度,但消耗了更多的网络资源。 因此,考虑到提升精度的有限改进,决策树显示出更多的优势,尽管总是有权衡

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值