Ollama高效、功能齐全的LLM大模型服务工具——只需一条命令即可在本地跑语言大模型

零. 引言


什么是Ollama:


Ollama是一个开源的大型语言模型服务工具,它帮助用户快速在本地运行大模型,通过简单的安装指令,可以让用户执行一条命令就在本地运行开源大型语言模型,例如 Llama2。这个框架简化了在Docker容器内部署和管理LLM的过程,使得用户能够快速地在本地运行大型语言模型。
Ollama 将模型权重、配置和数据捆绑到一个包中,定义成 Modelfile。它优化了设置和配置细节,包括 GPU 使用情况。

Ollama的优势:


①易于使用:Ollama提供了一个简单的API,使得即使是没有经验的用户也可以轻松使用。此外,它还提供了类似ChatGPT的聊天界面,用户无需开发即可直接与模型进行聊天交互。
②轻量级:Ollama的代码简洁明了,运行时占用资源少。这使得它能够在本地高效地运行,不需要大量的计算资源。
③可扩展:Ollama支持多种模型架构,并可以扩展以支持新的模型。它还支持热加载模型文件,无需重新启动即可切换不同的模型,这使得它非常灵活多变。
④预构建模型库:Ollama提供了一个预构建模型库,可以用于各种任务,如文本生成、翻译、问答等。这使得在本地运行大型语言模型变得更加容易和方便。

一. 下载 Ollama 安装文件


访问 https://ollama.com/download,选择 Windows,单击 “Download for Windows (Preview)” 进行下载。

二. 安装 Ollama


双击下载的 “OllamaSetup.exe”,进行安装。

三. 环境变量


Ollama 下载的模型默认保存在 C 盘
强烈建议更改默认路径,可以通过新建环境变量 OLLAMA_MODELS 进行修改。


OLLAMA_MODELS
E:\OllamaCache
 

设置成功后重启电脑生效修改

四. 使用 Ollama


访问 https://ollama.com/library,搜索需要使用的模型,主流的模型。

记得先启动Ollma,确保Ollma在任务栏

再下面以 qwen-7b 为例,选择运行 7b 的模型,

拷贝上面红框的命令并在cmd或者PowerShell运行(推荐使用cmd),

ollama run qwen:7b


等待模型下载与加载,目前前95%下载速度快,99%到100%速度较慢。
当出现 Send a nessage 即可开始模型的使用

qwen-7b效果图:

ollama run qwen:7b

orion14b-q4效果图:

ollama run orionstar/orion14b-q4

llama2-chinese效果图:

ollama run llama2-chinese

网络上搜集的问题与回答:

五. 再次使用


确保Ollama正常运行后,
在cmd输入运行代码即可免下载安装直接使用(已在第4步模型安装成功)
如:

ollama run llama2-chinese

六. 结语


本人使用的是8GB-2070super,16GB内存,i7-10700K。
在运行qwen-7b和llama2-chinese相当流畅,直接反馈出回复。

03-08
<think>好的,我现在需要回答用户关于Ollama的问题。首先,用户提到了Ollama本地部署和大模型运行,还引用了几个相关的引用内容。我需要先理解用户的问题到底是什么。用户最后问的是“我想ollma 请问ollma”,看起来可能是在问Ollama是什么,或者如何使用它?根据引用内容,用户可能想了解Ollama的基本信息、本地部署方法、常用命令以及数据安全方面的优势。 首先,我需要整理引用中的信息。引用[1]提到Ollama可以帮助在保证数据安全的情况下使用大语言模型,适合处理隐私数据。引用[2]讲的是通过Docker部署llama3模型,引用[3]列出了一些常用命令,比如删除模型和查看版本。用户可能想知道Ollama是什么,如何安装,常用命令,以及它的优势,比如数据安全。 接下来,我需要按照用户的要求结构化回答。系统级指令要求使用中文,数学公式用$...$,独立公式用$$...$$,但这里可能不需要数学公式。用户的问题涉及技术步骤,可能需要分点说明,确保结构清晰。同时,生成相关问题部分需要根据内容提出相关问题。 我需要确认每个步骤的正确性,比如安装Ollama的方法是否有不同途径,Docker的使用是否正确。引用[2]中提到的命令是使用Docker执行ollama并运行llama3模型,可能需要说明Docker的基本使用前提。常用命令部分,引用[3]提到的删除模型和查看版本是否正确,是否有其他常用命令需要补充。 另外,数据安全方面,引用[1]强调Ollama本地部署避免隐私数据外泄,这一点需要突出,说明与在线服务的区别。可能还需要提到支持的模型,如Qwen2.5、llama3等,用户如何选择模型参数。 在生成相关问题的时候,需要围绕Ollama功能、部署、命令、安全性和应用场景来提问,确保问题相关且有深度,比如如何选择模型参数、与在线服务的对比、常见错误处理等。 最后,检查是否符合格式要求:不使用Markdown,分点回答,引用标识在引用段落末尾自然添加,比如在讲解数据安全时引用[^1],部署步骤引用[^2],命令部分引用[^3]。确保LaTeX语法正确,不过当前内容可能不需要数学公式,但需要留意用户是否有数学相关的问题,这里可能不需要处理。 总结回答结构: 1. Ollama是什么:本地部署大模型工具,保证数据安全[^1] 2. 核心功能:模型下载、运行、管理,支持多种模型 3. 应用场景:处理隐私数据,替代在线服务 4. 安装步骤:Docker部署示例[^2] 5. 常用命令:运行模型、删除模型、查看版本 6. 优势:数据安全,灵活选择模型[^2] 相关问题部分需要涵盖安装、命令、模型选择、安全优势、应用场景、错误处理等。</think>Ollama 是一款支持本地部署大语言模型工具,允许用户在本地运行如 Qwen2.5、Llama3 等模型,无需依赖云端服务,从而保障数据隐私安全[^1]。 ### 分步说明 1. **Ollama 的核心功能** - **本地化运行**:模型和数据均在本地计算机处理,避免敏感信息外泄。 - **灵活管理模型**:支持下载、删除、切换不同参数的模型(如 8B、70B 参数量版本)[^2]。 - **命令行操作**:通过简单命令控制模型运行,例如启动 Llama3 模型: ```bash docker exec -it ollama ollama run llama3 ``` 2. **安装与部署** - 使用 Docker 快速部署(需提前安装 Docker 环境): ```bash docker run -d -p 11434:11434 --name ollama ollama/ollama ``` 此命令会创建容器并开放端口 11434 用于模型交互[^2]。 3. **常用操作命令** - **运行模型**:`ollama run <模型名称>`(如 `llama3`) - **删除模型**:`ollama rm <模型名称>` - **查看版本**:`ollama version`[^3] 4. **数据安全优势** 与 ChatGPT 等在线工具不同,Ollama本地部署确保数据无需上传第三方服务器,适合医疗、金融等隐私敏感领域。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值