大模型算法岗面试题系列(七十二)| Self-attention的公式及参数量?为什么用多头?为什么要除以根号d?

面试题:Self-attention的公式及参数量?为什么用多头?为什么要除以根号d?

参考答案

Self-attention,也称为自注意力,是一种在自然语言处理和其他序列建模任务中广泛使用的机制。以下是self-attention的基本公式和相关的参数量分析:

1. Self-Attention的基本公式:

Self-attention的计算可以分为三个步骤:计算查询(Q)、键(K)和值(V),然后计算注意力权重,最后进行加权求和。
在这里插入图片描述

2. 参数量:

  • 假设输入序列的长度为n,每个嵌入的维度为d。
  • WQ, WK, WV都是d × d维的矩阵。
  • 因此,每个权重矩阵有d^2个参数。
  • 总共有三个权重矩阵,所以参数量为3 × d^2。

3. 为什么使用多头(Multi-Head)?

多头注意力机制是将输入分割成多个“头”,每个“头”都有自己的权重矩阵WQ, WK, WV,可以捕捉到输入序列的不同部分和不同方面的信息。这样做有以下几个好处:

  • 捕捉不同关系: 不同的头可以学习到输入序列的不同关系和表示。
  • 增加模型容量: 多头注意力相当于有多个独立的注意力机制,可以增加模型的表达能力。
  • 并行计算: 多头注意力可以在不同的头上并行计算,提高计算效率。

4. 为什么除以根号d?

在计算注意力权重时,点积结果除以根号d_k(键向量的维度)的原因是为了在大量维度的情况下防止点积结果过大,导致softmax函数在梯度下降过程中饱和,从而难以训练。这个操作可以看作是一种缩放,目的是保持数值稳定性。

具体来说,当维度d_k增加时,Q和K的点积会不成比例地增加,这可能导致softmax函数的梯度变得非常小(因为softmax函数的梯度在输入非常大或非常小的时候接近于0)。通过除以根号d_k,可以确保点积的方差保持在一个合理的范围内,使得训练过程更加稳定。

这种做法是基于一个假设,即每个维度应该是独立的并且具有相同的方差。当所有维度都缩放到方差为1时,点积的方差将是d_k,因此除以根号d_k可以保持点积的期望值为1。


文末

有需要全套的AI大模型面试题及答案解析资料的小伙伴,可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

在当前AI领域,特别是自然语言处理任务中,理解和掌握Self-Attention和Multi-Head Attention的工作原理对于准备技术面试至关重要。推荐您参阅《算法面试必备:Transformer与Attention深度解析》文档,该文档深入分析了这些关键概念,并提供了面试中可能会遇到的实操题目。 参考资源链接:[算法面试必备:Transformer与Attention深度解析](https://wenku.csdn.net/doc/5a2xaau49h?spm=1055.2569.3001.10343) Self-Attention机制通过为序列中的每个元素分配一个权重,来捕捉不同位置之间的依赖关系。在Transformer模型的Encoder层中,Self-Attention通过以下步骤实现:首先,将输入序列中的每个词向量映射到查询(Q)、键(K)和值(V)三个向量。然后,计算Q与K的点积得到权重矩阵,该矩阵经过softmax函数得到最终的注意力权重。最后,将权重矩阵与V向量相乘并求和,得到加权的值向量。这个加权的值向量就是该位置的上下文表示,它整合了序列中所有位置的信息。 Multi-Head Attention进一步增强了Self-Attention的功能,它将Self-Attention划分为多个“头”,每个头执行单独的Self-Attention计算。每个头计算出的上下文表示将被拼接并线性变换,以生成最终的输出。这种设计能够使模型并行捕捉输入序列中不同方面的特征信息,例如某个词的不同语义关系,从而在处理复杂任务时表现出更高的灵活性和效率。 相较于传统的RNN,Transformer模型在处理序列数据时具有显著优势。RNN因为其递归结构,在处理长序列时容易出现梯度消失或爆炸的问题,并且难以进行并行计算。而Transformer利用自注意力机制和位置嵌入,不需要序列的递归计算,可以在不同的序列位置之间进行直接计算,这不仅提高了训练速度,还使得模型能更好地学习序列的全局依赖关系。此外,Transformer的Encoder-Decoder结构特别适合于需要考虑整个输入序列信息的机器翻译等任务。 总结来说,通过理解Self-Attention和Multi-Head Attention的工作原理,以及它们为Transformer模型带来的优势,您可以更有效地准备算法面试,特别是在涉及自然语言处理和机器学习的面试中。建议在阅读相关资料后,尝试在实际项目中应用这些概念,以加深理解和记忆。 参考资源链接:[算法面试必备:Transformer与Attention深度解析](https://wenku.csdn.net/doc/5a2xaau49h?spm=1055.2569.3001.10343)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值