一文彻底搞懂深度学习 - 反向传播(Back Propagation)

反向传播(Back Propagation,简称BP)算法是深度学习中最为核心和常用的优化算法之一,广泛应用于神经网络的训练过程中。它通过计算损失函数关于网络参数的梯度来更新参数,从而最小化损失函数并提高模型的预测准确性。

一、前向传播

1、前向传播(Forward Propagation)是什么?

前向传播是神经网络中的一种基本计算过程,用于通过网络的每一层传递输入数据并生成输出。

从神经网络的输入层开始,逐层计算每一层神经元的输出,直到到达输出层并生成最终预测结果。

在这里插入图片描述

2、为什么需要前向传播?

前向传播是神经网络进行预测和分类的基础过程。

在训练阶段,前向传播用于生成预测结果,并与真实标签进行比较以计算损失函数的值。然后,通过反向传播算法将损失函数的梯度信息反向传递回网络,用于更新权重和偏置等参数。

在推理阶段,神经网络仅使用前向传播过程来生成预测结果。此时,输入数据通过网络进行前向传播,直到输出层生成最终的预测结果。

二、反向传播

1、反向传播(Back Propagation)是什么?

BP算法是由Rumelhart、Hinton和Williams等人在1986年共同提出的,是神经网络的通用训练算法。

在BP算法出现之前,多层神经网络的训练一直是一个难题,因为无法有效地计算每个参数对于损失函数的梯度。BP算法通过反向传播梯度,利用链式法则逐层计算每个参数的梯度,从而实现了多层神经网络的训练。

2、反向传播的工作原理是什么?

通过链式法则从输出层到输入层逐层计算误差梯度,并利用这些梯度更新网络参数以最小化损失函数。

  • 从输出层向输入层传播:算法从输出层开始,根据损失函数计算输出层的误差,然后将误差信息反向传播到隐藏层,逐层计算每个神经元的误差梯度。

  • 计算权重和偏置的梯度:利用计算得到的误差梯度,可以进一步计算每个权重和偏置参数对于损失函数的梯度

  • 参数更新:根据计算得到的梯度信息,使用梯度下降或其他优化算法来更新网络中的权重和偏置参数,以最小化损失函数。

3、为什么需要计算误差梯度?

误差梯度提供了损失函数相对于参数的变化率信息。当梯度为正时,表示损失函数值随着参数的增加而增加;当梯度为负时,表示损失函数值随着参数的减少而减少。

通过计算梯度,我们可以确定参数更新的方向,即应该增加还是减少参数值,以最小化损失函数。

4、如何计算梯度?

自动微分利用计算图(Computational Graph)和链式法则自动计算梯度。

  • 将计算过程表示为一系列操作(如加法、乘法、激活函数等)的组合,这些操作构成计算图。

  • 在前向传播过程中,计算每个节点的输出,并保存中间结果。

  • 在反向传播过程中,从输出层开始,逐层计算每个节点的梯度,并使用链式法则将梯度传播到前面的节点。

在深度学习中,自动微分通常通过深度学习框架(如TensorFlow、PyTorch)实现,这些框架提供了高效的自动微分机制,使得梯度计算变得简单快捷。


三、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值