如何使用大模型进行数据分类分级

数据分级分类,是数据治理,数据安全的基础。长期以来,针对数据分级分类,有许多的探索,包括各种机器学习的方法,都有一定的效果。大模型出现后,许多搞数据安全相关的公司纷纷宣布,使用大模型进行分级分类取得非常好的效果,包括效率大幅提升,准确率提高等。

大模型如何用来对数据进行分类分级?我们从大模型能力,Prompt提升,微调等方面,详细看看。

一、大模型的能力

大模型类似人脑,本身具备逻辑分析能力,可以直接用于数据分类,举个简单的例子:

也可以要求它直接输出JSON格式,便于代码解析

{
"患者基本信息": {
"姓名": "张三",
"性别": "男",
"年龄": "35岁",
"联系方式": "13812345678"
},
"就医信息": {
"入院日期": "2024年11月15日",
"入院原因": "肺炎"
},
"医疗信息": {
"诊断结果": "双侧肺炎",
"治疗方案": "抗生素治疗"
},
"状态信息": {
"病情状态": "稳定"
}
}

二、Prompt增强

以上的分类,基于直觉虽然没什么错误,但离商用还远,实际上,分类的标准并不固定,有各种各样的要求,这种情况下,需要把分类标准直接告诉大模型,按需要的标准分类。

以下是一个简单的例子:

大模型有个神奇咒语,叫 think step by step,在数据分类的时候也可以应该,包括指定它的处理步骤,比如:

整体分类结果还是很清晰的。

三、指令微调

实际的数据分类非常复杂,有各种各样的要求,还有许多国标和行标,以及企业针对自身情况制定的一些分类标准,要求大模型按这些标准进行分类,需要准确告诉大模型这些分类标准。而要准确描述这些分类标准,可能需要几千字甚至更多,这个会带来效率的降低和成本的提升(需要很多Tokens)。解决这个问题的方法是使用指令微调。
当有大量领域特定数据,不太容易描述时,也可以使用微调。

指令微调比较简单,象openai,claude,千问等,都开放了微调API, 所有的开源模型都支持微调,但需要准备微调数据集,数据的内容大体是这个样子:

training_data = [
{
"instruction": "判断以下医疗文本的科室分类",
"input": "患者出现头痛、恶心、视物模糊等症状",
"output": "神经内科"
},
# 更多训练样本...
]

微调后可以大幅简化Prompt,理论上也可以提高准确率(主要取决于数据集的质量)。

四、更复杂的形式

实际的分类工作会更复杂,在问题优化时不断强化能力,结合各种手段的使用,取得更好的效果。以下是论文提到的一种方法

框架的步骤可以包括:
(1)从数据源收集数据以建立领域数据库;
(2)将特定领域的数据发送到预先训练的 LLM 模型,如 GPT-4、Llama-3 等;
(3)使用一些特定领域的数据进行微调或小样本学习;
(4)将微调或小样本学习应用于预训练的 LLM 模型;
(5)(可选)利用领域知识专家设置提示以提高 LLM 性能;
(6)在预训练模型中应用提示;
(7)评估整个专家系统的性能;
(8)非专家用户通过用户界面向专家系统查询任务;(任务可能包括分类、情绪分析、预测、推荐等。在本文中,我们以分类和情绪分析为例。)
(9)LLM API 与用户界面和预训练的 LLM 模型交互,为用户界面提供建议。

五、大模型用于分类的实际效果

以下是一个安全公司提供的流程图和效果图,看上去用大模型分类的结果很好,并且效率提升也很好。

六、总结

以前的分类流程,复杂且难以实现:

现在的分类流程,简单直接:

基于大模型开发分类的代码,大约只需要几十行。

原来非常复杂的软件,现在变得极其简单,只能说,软件的世界正在发生剧变。

注:
1.文中的大模型例子用的是Claude的免费版本
2.Github上使用大模型分类的例子
https://github.com/jeffheaton/app_generative_ai/blob/main/t81_559_class_03_4_classification.ipynb
3.论文地址:
https://arxiv.org/html/2405.10523v1


七、最后分享

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。
在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值