MCP从入门到精通(五)使用LangChain AI构建MCP智能体

十一、使用LangChain AI构建MCP智能体

LangChain支持使用工具调用(tool-calling)与MCP集成。这种支持允许你设置Python函数,以访问不同的MCP服务器并获取工具,从而在AI项目中执行各种任务。以下示例代码连接到一个安全的MCP文件系统服务器,使大型语言模型(LLM)能够准确回答你提供的任何文件相关的问题。

# Copyright (C) 2024 Andrew Wason
# SPDX-License-Identifier: MIT

import asyncio
import pathlib
import sys
import typing as t

from langchain_core.messages import AIMessage, BaseMessage, HumanMessage
from langchain_core.output_parsers import StrOutputParser
from langchain_core.tools import BaseTool
from langchain_groq import ChatGroq
from mcp import ClientSession, StdioServerParameters
from mcp.client.stdio import stdio_client

from langchain_mcp import MCPToolkit

asyncdefrun(tools: list[BaseTool], prompt: str) -> str:
    model = ChatGroq(model_name="llama-3.1-8b-instant", stop_sequences=None)  # requires GROQ_API_KEY
    tools_map = {tool.name: tool for tool in tools}
    tools_model = model.bind_tools(tools)
    messages: list[BaseMessage] = [HumanMessage(prompt)]
    ai_message = t.cast(AIMessage, await tools_model.ainvoke(messages))
    messages.append(ai_message)
for tool_call in ai_message.tool_calls:
        selected_tool = tools_map[tool_call["name"].lower()]
        tool_msg = await selected_tool.ainvoke(tool_call)
        messages.append(tool_msg)
returnawait (tools_model | StrOutputParser()).ainvoke(messages)

asyncdefmain(prompt: str) -> None:
    server_params = StdioServerParameters(
        command="npx",
        args=["-y", "@modelcontextprotocol/server-filesystem", str(pathlib.Path(__file__).parent.parent)],
    )
asyncwith stdio_client(server_params) as (read, write):
asyncwith ClientSession(read, write) as session:
            toolkit = MCPToolkit(session=session)
await toolkit.initialize()
            response = await run(toolkit.get_tools(), prompt)
print(response)

if __name__ == "__main__":
    prompt = sys.argv[1] iflen(sys.argv) > 1else"Read and summarize the file ./readme.md"
    asyncio.run(main(prompt))

在运行上述代码前,我们需要安装依赖包:

pip install streamlit mcp praisonaiagents 
pm install -g @modelcontextprotocol/server-filesystem

所有必需的包安装完毕后,如果你向项目中添加了一个文件,并在 Python 脚本中按照示例代码(如上所示的 ./readme.md)引用它,你应该会看到类似如下的输出。

img


如何系统学习掌握AI大模型?

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。

学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。

这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享

1. 成长路线图&学习规划

要学习一门新的技术,作为新手一定要先学习成长路线图方向不对,努力白费

这里,我们为新手和想要进一步提升的专业人士准备了一份详细的学习成长路线图和规划。可以说是最科学最系统的学习成长路线。

在这里插入图片描述

2. 大模型经典PDF书籍

书籍和学习文档资料是学习大模型过程中必不可少的,我们精选了一系列深入探讨大模型技术的书籍和学习文档,它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础(书籍含电子版PDF)

在这里插入图片描述

3. 大模型视频教程

对于很多自学或者没有基础的同学来说,书籍这些纯文字类的学习教材会觉得比较晦涩难以理解,因此,我们提供了丰富的大模型视频教程,以动态、形象的方式展示技术概念,帮助你更快、更轻松地掌握核心知识

在这里插入图片描述

4. 2024行业报告

行业分析主要包括对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

在这里插入图片描述

5. 大模型项目实战

学以致用 ,当你的理论知识积累到一定程度,就需要通过项目实战,在实际操作中检验和巩固你所学到的知识,同时为你找工作和职业发展打下坚实的基础。

在这里插入图片描述

6. 大模型面试题

面试不仅是技术的较量,更需要充分的准备。

在你已经掌握了大模型技术之后,就需要开始准备面试,我们将提供精心整理的大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余。

在这里插入图片描述

全套的AI大模型学习资源已经整理打包,有需要的小伙伴可以微信扫描下方CSDN官方认证二维码,免费领取【保证100%免费

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值