实现N-gram语言模型算法

280 篇文章 ¥59.90 ¥99.00
本文介绍了如何使用Python实现N-gram语言模型,通过统计N-gram序列频率预测下一个词。讲解了生成N-gram序列和预测函数的实现,并提供代码示例,适用于文本生成、机器翻译和语音识别等领域的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

N-gram语言模型是一种常用的自然语言处理技术,用于预测给定上下文的下一个词或字符。在这篇文章中,我们将使用Python来实现一个简单的N-gram语言模型算法。

N-gram语言模型基于统计方法,它假设当前词的出现仅与前面的N-1个词相关。具体来说,给定一个文本语料库,我们将统计每个N-gram序列的出现频率,并根据这些频率来预测下一个词或字符。

首先,让我们定义一个函数来生成N-gram序列。我们将使用Python中的列表(list)来表示文本语料库,并使用字典(dictionary)来存储N-gram序列及其出现次数。

def generate_ngrams(text, n):
    ngrams = {
   
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值