基于MATLAB的SEIR/SEIRS传染病模型仿真与模拟
传染病模型是研究传染病传播和控制的重要工具。其中,SEIR(Susceptible-Exposed-Infectious-Recovered)和SEIRS(Susceptible-Exposed-Infectious-Recovered-Susceptible)模型是常用的传染病模型之一。本文将介绍如何使用MATLAB进行SEIR/SEIRS传染病模型的仿真与模拟,并提供相应的源代码。
传染病模型的基本假设是人群可以分为四个互相转化的状态:易感者(Susceptible)、潜伏者(Exposed)、感染者(Infectious)和康复者(Recovered)。SEIR模型不考虑康复者再次感染的情况,而SEIRS模型考虑了康复者可能再次变为易感者的情况。
首先,我们需要定义传染病模型的参数。以下是一些常用的参数及其含义:
- β(beta):感染率,表示一个感染者每天将疾病传给易感者的平均人数。
- γ(gamma):恢复率,表示一个感染者每天恢复的平均比例。
- α(alpha):潜伏期的倒数,表示一个潜伏者每天成为感染者的平均比例。
- σ(sigma)ÿ