基于遗传算法优化的ELMAN神经网络在数据回归预测中的实现(附带MATLAB代码)

233 篇文章 75 订阅 ¥59.90 ¥99.00
本文介绍了如何使用遗传算法优化ELMAN神经网络以提升其在数据回归预测中的性能。在MATLAB中,通过构建ELMAN神经网络、应用遗传算法进行参数优化,并对测试集进行预测,可以实现更准确的预测结果。文章提供了一个完整的MATLAB代码示例,并强调了自定义评估函数的重要性。
摘要由CSDN通过智能技术生成

介绍:
在数据回归预测问题中,神经网络是一种常用的建模工具。而ELMAN神经网络是一种递归神经网络(RNN)的变种,它在处理序列数据时具有优势。为了进一步提高ELMAN神经网络的性能,我们可以使用遗传算法来优化其参数。本文将介绍基于遗传算法优化的ELMAN神经网络在MATLAB中的实现,并附带相应的源代码。

步骤:

  1. 数据准备:
    首先,我们需要准备用于训练和测试的数据集。确保数据集包含输入变量和相应的输出变量,并将其分为训练集和测试集。

  2. ELMAN神经网络的建立:
    在MATLAB中,我们可以使用Neural Network Toolbox来构建ELMAN神经网络。以下是一个简单的ELMAN神经网络的创建示例:

inputSize = 10; % 输入层的大小
hiddenSize = 20
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值