基于最小二乘法的系统参数识别MATLAB实现

本文介绍了如何使用MATLAB基于最小二乘法进行系统参数识别,通过模拟一个二阶传递函数,详细阐述了从构建损失函数到使用lsqnonlin优化参数的全过程,以求得最优系统参数估计值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

基于最小二乘法的系统参数识别MATLAB实现

在控制系统的设计过程中,准确地识别和估计系统参数是十分必要的。其中,最小二乘法作为一种常见的参数辨识方法,在工业控制、信号处理、模式识别等领域得到了广泛应用。本文将介绍如何使用MATLAB实现基于最小二乘法的系统参数辨识,并附上相应的源代码。

首先,我们需要了解最小二乘法的原理。最小二乘法是一种数学优化技术,通过最小化误差平方和来确定模型的参数。在系统参数辨识中,我们可以将实际输出与模型输出之间的误差平方和定义为损失函数,通过最小化该损失函数,得到最优的系统参数估计值。

接下来,我们将以一个简单的线性系统为例进行说明。假设我们有一个二阶传递函数:

G ( s ) = 1 (

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值