Codeforces Round 940 (Div. 2) A~D

本文介绍了三道编程题目,涉及贪心策略在正多边形拼接中的应用、构造满足特定条件的数字序列以及动态规划解决棋盘上车的移动问题,展示了在IT技术中不同算法的应用场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

A.Stickogon(贪心)

题意:

给你 n n n个长度为 a 1 , a 2 , … , a n a_1,a_2,\ldots,a_n a1,a2,,an的木棒。求你能同时拼出的正多边形(等边)的最大数量,使得:

  • 多边形的每条边都正好由一根木棒组成。
  • 多边形中使用的小棒不超过 1 1 1根。

注意:木棒不能折断。

分析:

本题我们贪心地考虑,尽可能找 3 3 3个长度一样的棍子凑成一个正多边形,然后统计个数。

代码:

#include<bits/stdc++.h>

using namespace std;

int main() {
    int t;
    cin >> t;
    while (t--) {
        int n;
        cin >> n;
        map<int, int> mp;
        for (int i = 0; i < n; i++) {
            int x;
            cin >> x;
            mp[x]++;
        }
        int ans = 0;
        for (auto s: mp) {
            ans += s.second / 3;
        }
        cout << ans << endl;
    }
    return 0;
}

B.A BIT of a Construction(构造)

题意:

给定整数 n n n k k k,构造一个由 n n n个非负整数(即 ≥ 0 \geq 0 0)组成的序列 a 1 , a 2 , … , a n a_1,a_2,\ldots,a_n a1,a2,,an,使得

  1. ∑ i = 1 n a i = k \sum\limits_{i=1}^n a_i=k i=1nai=k
  2. 使 a 1 ∣ a 2 ∣ … ∣ a n a_1 | a_2 | \ldots | a_n a1a2an的二进制表示中 1 1 1个数最大。

分析:

要求或运算 1 1 1的个数最大,显然最优的就是有最低到最高位都摆成连续的 1 1 1,我们尽可能考虑每一位上的 1 1 1都只出现一次,位数越低的 1 1 1代价越低,因此位数从小到大构造 1 1 1,直到无法构造为止。注意特判 n = 1 n=1 n=1的情况。

代码:

#include<bits/stdc++.h>

using namespace std;

int main() {
    int t;
    cin >> t;
    while (t--) {
        int n, m;
        cin >> n >> m;
        if (n == 1) {
            cout << m << endl;
        } else {
            int cnt = 1;
            while (cnt * 2 + 1 <= m) {
                cnt = cnt * 2 + 1;
            }
            cout << cnt << " " << m - cnt << " ";
            for (int i = 2; i < n; i++) {
                cout << 0 << " ";
            }
            cout << endl;
        }
    }
    return 0;
}

C.How Does the Rook Move?(组合数学/动态规划)

题意:

给你一个 n × n n\times n n×n的棋盘,你和电脑轮流在棋盘上分别放置白车和黑车。在放置车的过程中,必须确保没有两个车会互相攻击。如果两只车共用同一行或同一列,无论颜色如何,都会互相攻击。

有效的一步棋是将一只车放在一个位置( r r r, c c c),使它不会攻击任何其他车。

你先下,当你在自己的回合中走了一步有效的棋,将白车下在位置( r r r, c c c)时,电脑会照搬你的棋,在它的回合中将黑车放在位置( c c c, r r r)。如果是 r = c r=c r=c,那么电脑就无法映射你的棋步,并跳过它的回合。

您已经与电脑下了 k k k步棋(电脑也会尝试复制这些棋步),你必须继续下棋直到没有剩余的有效棋步为止。在 k k k步之后继续下棋时,有多少种不同的最终情况是可能的?题目保证 k k k步和隐含的计算机棋步都是有效的。由于答案可能较大,答案对 1 0 9 + 7 10^9+7 109+7取模。

如果有一个坐标( r r r c c c)在一种情况中有车,而在另一种情况中没有车,或者坐标上的车的颜色不同,那么这两种情况就被认为是不同的。

分析:

我们采用动态规划的思路,记先手白棋填满 n × n n×n n×n的空矩阵的方案数为 f n f_n fn,初始化 f 0 = f 1 = 1 f_0=f_1=1 f0=f1=1

并不考虑此时放的是第几个棋子,而是考虑该矩阵的第 n n n行或列是如何被删去的:

若是被放置在 ( n , n ) (n,n) (n,n)的棋子删去,则仅需考虑如何填满剩下的 ( n − 1 ) × ( n − 1 ) (n−1)×(n−1) (n1)×(n1)的矩阵即可,则贡献为 f n − 1 f_{n−1} fn1

否则应有一白棋放置在 ( n , j ) (n,j) (n,j) ( j , n ) (j,n) (j,n) ( 1 ≤ j ≤ n − 1 ) (1≤j≤n−1) (1jn1),方案数为 2 × ( n − i ) 2×(n−i) 2×(ni),然后再考虑如何填满剩下的 ( n − 2 ) × ( n − 2 ) (n−2)×(n−2) (n2)×(n2)的矩阵,则贡献为 2 × ( n − 1 ) × f n − 2 2×(n−1)×f_{n−2} 2×(n1)×fn2

则有转移方程:
∀ 2 ≤ i , f i = f i − 1 + 2 × ( i − 1 ) × f i − 2 ∀2≤i,f_i=f_{i−1}+2×(i−1)×f_{i−2} ∀2i,fi=fi1+2×(i1)×fi2

预处理即可。

代码:

#include<bits/stdc++.h>

typedef long long LL;
using namespace std;
const LL mod = 1e9 + 7;
const LL N = 3e5 + 5;

LL f[N];

void Init() {
    f[0] = f[1] = 1;
    for (int i = 2; i <= N; i++) {
        f[i] = f[i - 1] + 2ll * (i - 1) * f[i - 2] % mod;
        f[i] %= mod;
    }
}

int main() {
    Init();
    int t;
    cin >> t;
    while (t--) {
        int n, k;
        cin >> n >> k;
        for (int i = 1; i <= k; i++) {
            int x, y;
            cin >> x >> y;
            if (x != y)
                n -= 2;
            else
                n -= 1;
        }
        cout << f[n] << endl;
    }
    return 0;
}

D.A BIT of an Inequality(前缀和)

题意:

给你一个数组 a 1 , a 2 , … , a n a_1,a_2,\ldots,a_n a1,a2,,an。求这样的元组( x , y , z x,y,z x,y,z)的个数:

  • 1 ≤ x ≤ y ≤ z ≤ n 1\leq x\leq y\leq z\leq n 1xyzn
  • f ( x , y ) ⊕ f ( y , z ) > f ( x , z ) f(x,y)\oplus f(y,z)\gt f(x,z) f(x,y)f(y,z)>f(x,z)

我们定义 f ( l , r ) = a l ⊕ a l + 1 ⊕ … ⊕ a r f(l,r)=a_l\oplus a_{l+1}\oplus\ldots\oplus a_{r} f(l,r)=alal+1ar

分析:

二进制拆位前缀和,只是维护的是到当前这位的 1 1 1的个数为奇数的个数。

维护出来之后对每个 y y y找最高位的 1 1 1,显然 f ( x , z ) f(x,z) f(x,z) f ( y , z ) f(y,z) f(y,z)的这一位的 1 1 1的个数之和只要为偶数,那么 f ( x , y ) ⊕ f ( y , z ) > f ( x , z ) f(x,y)\oplus f(y,z)\gt f(x,z) f(x,y)f(y,z)>f(x,z),因为此时 f ( x , z ) f(x,z) f(x,z)这一位为 0 0 0了,而 f ( x , y ) ⊕ f ( y , z ) f(x,y)\oplus f(y,z) f(x,y)f(y,z)这一位仍为 1 1 1

显然为偶数的情况要么是奇数加奇数,要么是偶数加偶数。

代码:

#include<bits/stdc++.h>

typedef long long LL;
using namespace std;
const LL mod = 1000000007;
const LL N = 1e5 + 5;

LL dp[32][N];

void solve() {
    int n;
    cin >> n;
    vector<int> a(n);
    for (auto &x: a)
        cin >> x;
    for (int i = 0; i < 31; i++) {
        int sum = 0;
        for (int j = 0; j < n; j++) {
            sum = (sum + (a[j] >> i & 1)) & 1;
            if (sum == 1) {
                dp[i][j + 1] = dp[i][j] + 1;
            } else {
                dp[i][j + 1] = dp[i][j];
            }
        }
    }
    LL res = 0;
    for (int i = 0; i < n; i++) {
        int p = 0;
        for (int j = 30; j >= 0; j--) {
            if (a[i] >> j & 1) {
                p = j;
                break;
            }
        }
        LL add1(1LL * dp[p][i] * (dp[p][n] - dp[p][i]));
        LL add2(1LL * (i + 1 - dp[p][i]) * (n - i - (dp[p][n] - dp[p][i])));
        res += add1 + add2;
    }
    cout << res << endl;
}

int main() {
    int t;
    cin >> t;
    while (t--) {
        solve();
    }
    return 0;
}

赛后交流

在比赛结束后,会在交流群中给出比赛题解,同学们可以在赛后查看题解进行补题。

群号: 704572101,赛后大家可以一起交流做题思路,分享做题技巧,欢迎大家的加入。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值