作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai
简书地址:https://www.jianshu.com/p/ce4ee40963c1
计划现将 tensorflow 中的 Python API 做一个学习,这样方便以后的学习。
原文链接
该章介绍有关数学符号操作的API
算术运算符
TensorFlow提供了一些操作,你可以使用基本的算术运算符添加到你的图表。
tf.add(x, y, name = None)
解释:这个函数返回x与y逐元素相加的结果。
注意:tf.add操作支持广播形式,但是tf.add_n操作不支持广播形式。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant(2)
b = tf.constant(3)
c = tf.add(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int8
,int16
,int32
,complex64
,int64
。
* y
: 一个Tensor
,数据类型必须和x
相同。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.sub(x, y, name = None)
解释:这个函数返回x与y逐元素相减的结果。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1,2])
b = tf.constant(2)
c = tf.sub(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int8
,int16
,int32
,complex64
,int64
。
* y
: 一个Tensor
,数据类型必须和x
相同。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.mul(x, y, name = None)
解释:这个函数返回x与y逐元素相乘的结果。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1,2])
b = tf.constant(2)
c = tf.mul(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int8
,int16
,int32
,complex64
,int64
。
* y
: 一个Tensor
,数据类型必须和x
相同。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.div(x, y, name = None)
解释:这个函数返回x与y逐元素相除的结果。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1,2])
b = tf.constant(2)
c = tf.div(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int8
,int16
,int32
,complex64
,int64
。
* y
: 一个Tensor
,数据类型必须和x
相同。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.mod(x, y, name = None)
解释:这个函数返回x与y逐元素取余的结果。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1,2])
b = tf.constant(2)
c = tf.mod(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:int16
,int32
,float32
,float64
。
* y
: 一个Tensor
,数据类型必须和x
相同。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
基础的数学函数
TensorFlow提供了一些操作,你可以使用基本的数学函数,将它们添加到你的图表。
tf.add_n(inputs, name = None)
解释:这个函数的作用是对inputs列表中的元素相应位置累加。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1,2], tf.int32)
b = tf.constant([3,4], tf.int32)
c = tf.add_n([a,b])
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* inputs
: 一个列表,其中至少有一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int64
,int32
,uint8
,int16
,int8
,complex64
,qint8
,quint8
,quint32
。并且列表中的每个Tensor
必须有相同的数据维度。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和inputs
相同。
tf.abs(x, name = None)
解释:这个函数的作用返回x
的绝对值。
给定x
,它是一个实数Tensor
。这个操作返回一个tensor
,这个tensor
中的每个值是对应于x
中的每个值得绝对值。
如果,你需要处理复数的绝对值,那么可以使用tf.complex_abs()
函数。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1,-2])
c = tf.abs(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float
,double
,int64
或者int32
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和数据维度都和x
相同。
tf.neg(x, name = None)
解释:这个函数的作用是得到x
中每个值得负数,即y = -x
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1,-2])
c = tf.neg(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.sign(x, name = None)
解释:这个函数是一个符号函数,按照如下规则转换x
中的每一个值。
如果 x < 0,y = sign(x) = -1;
如果 x == 0,y = sign(x) = 0;
如果 x > 0,y = sign(x) = 1;
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([1,-2,0])
c = tf.sign(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int32
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.inv(x, name = None)
解释:这个函数是计算x
中每个元素的倒数,即y = 1/x
。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant(7.0)
c = tf.inv(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
译者注:
我测试了一下这个API,但好像x
的数据类型只有是float
类型时才能成功。
tf.square(x, name = None)
解释:这个函数是计算x
中每个元素的平方,即y = x*x = x^2
。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.0,7.0])
c = tf.square(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.round(x, name = None)
解释:这个函数是得到x
中每个元素离它最接近的整数。
比如:
# 'a' is [0.9, 2.5, 2.3, -4.4]
tf.round(a) ==> [ 1.0, 3.0, 2.0, -4.0 ]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.9, 0.0, -2.1, 2.0, 7.2])
c = tf.round(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是float
或者double
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同,数据维度和x
相同。
tf.sqrt(x, name = None)
解释:这个函数是得到x
中每个元素的开平方值,即y = x^{1/2}
。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2, 3], tf.float32)
c = tf.sqrt(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.rsqrt(x, name = None)
解释:这个函数是得到x
中每个元素的开平方值的导数,即y = 1/x^{1/2}
。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2, 3], tf.float32)
c = tf.rsqrt(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.pow(x, y, name = None)
解释:这个函数是计算幂运算。
给定一个x
和y
,对应x
和y
中的每一个值,计算x^y
。
比如:
# tensor 'x' is [[2, 2]], [3, 3]]
# tensor 'y' is [[8, 16], [2, 3]]
tf.pow(x, y) ==> [[256, 65536], [9, 27]]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2, 3])
b = tf.constant([2, 3])
c = tf.pow(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float
,double
,int32
,complex64
,int64
。
* y
: 一个Tensor
,数据类型必须是以下之一:float
,double
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
。
tf.exp(x, name = None)
解释:这个函数是计算x
中每个元素的指数,即y = e^x
。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.0, 1], tf.float32)
c = tf.exp(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.log(x, name = None)
解释:这个函数是计算x
中每个元素的自然对数,即y = log(x)
。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.0, 1], tf.float32)
c = tf.log(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.ceil(x, name = None)
解释:这个函数是返回不小于x
中每个元素的最小整数。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.2, -1.8], tf.float32)
c = tf.ceil(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.floor(x, name = None)
解释:这个函数是返回不大于x
中每个元素的最大整数。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.2, -1.8], tf.float32)
c = tf.floor(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.maximum(x, y, name = None)
解释:这个函数是逐个比较x
和y
中的值,求得最大值,即x > y ? x : y
。该函数支持广播形式。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.2, -1.8, 0.0])
b = tf.constant(1.0)
c = tf.maximum(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,int64
。
* y
: 一个Tensor
,数据类型和x
相同。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.minimum(x, y, name = None)
解释:这个函数是逐个比较x
和y
中的值,求得最小值,即x < y ? x : y
。该函数支持广播形式。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.2, -1.8, 0.0])
b = tf.constant(1.0)
c = tf.minimum(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,int64
。
* y
: 一个Tensor
,数据类型和x
相同。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.cos(x, name = None)
解释:这个函数是计算x
中每个元素的余弦值。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.2, -1.8, 0.0])
c = tf.cos(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
tf.sin(x, name = None)
解释:这个函数是计算x
中每个元素的正弦值。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.2, -1.8, 0.0])
c = tf.sin(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,complex64
,int64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同。
矩阵数学函数
TensorFlow提供了一些操作,你可以使用添加基本的矩阵数学函数在你的图中。
tf.diag(diagonal, name = None)
解释:这个函数是给定一个对角值diagonal
,然后返回一个对角tensor
。
给定一个对角值diagonal
,这个操作返回一个对角tensor
,对角线上面的值是diagonal
,其余值都用0
来填充。
假设diagonal
的维度为[D1, D2, ..., Dk]
,那么输出tensor
的秩为2k
,维度是[D1, D2, ..., Dk, D1, D2, ..., Dk]
,如下:
output[i1, i2, ..., ik, i1, i2, ..., ik] = diagonal[i1, .., ik],其余值都是0。
比如:
# 'diagonal' is [1, 2, 3, 4]
tf.diag(diagonal) ==> [[1, 0, 0, 0]
[0, 2, 0, 0]
[0, 0, 3, 0]
[0, 0, 0, 4]]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
a = tf.constant([2.2, -1.8, 1.0])
c = tf.diag(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* diagonal
: 一个Tensor
,数据类型必须是以下之一:float32
,float64
,int32
,int64
。它的秩最大为3。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和diagonal
相同。
tf.transpose(a, perm = None, name = 'transpose')
解释:将a
进行转置,并且根据perm
参数重新排列输出维度。
输出数据tensor
的第i
维将根据perm[i]
指定。比如,如果perm
没有给定,那么默认是perm = [n-1, n-2, ..., 0]
,其中rank(a) = n
。默认情况下,对于二维输入数据,其实就是常规的矩阵转置操作。
比如:
input_data.dims = (1, 4, 3)
perm = [1, 2, 0]
# 因为 output_data.dims[0] = input_data.dims[ perm[0] ]
# 因为 output_data.dims[1] = input_data.dims[ perm[1] ]
# 因为 output_data.dims[2] = input_data.dims[ perm[2] ]
# 所以得到 output_data.dims = (4, 3, 1)
output_data.dims = (4, 3, 1)
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
sess = tf.Session()
input_data = tf.constant([[1,2,3],[4,5,6]])
print sess.run(tf.transpose(input_data))
print sess.run(input_data)
print sess.run(tf.transpose(input_data, perm=[1,0]))
input_data = tf.constant([[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]])
print 'input_data shape: ', sess.run(tf.shape(input_data))
output_data = tf.transpose(input_data, perm=[1, 2, 0])
print 'output_data shape: ', sess.run(tf.shape(output_data))
print sess.run(output_data)
sess.close()
输入参数:
* a
: 一个Tensor
。
* perm
: 一个对于a
的维度的重排列组合。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个经过翻转的Tensor
。
tf.matmul(a, b, transpose_a = False, transpose_b = False, a_is_sparse = False, b_is_sparse = False, name = None)
解释:将矩阵a
和矩阵b
进行相乘,得到矩阵a
*b
。
输入数据必须是一个二维的矩阵,经过转置或者不转置,内部维度必须相匹配。
输入矩阵必须有相同的数据类型,数据类型为:float
,double
,int32
,complex64
。
矩阵可以被设置为转置操作,即transpose_a = True, transpose_b = True
。默认情况下,该标记都是被设置为False
。
如果矩阵中存在很多的0
,那么我们可以使用sparse
标记,即a_is_sparse = True, b_is_sparse = True
。默认情况下,该标记都是被设置为False
。
比如:
# 2-D tensor `a`
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3]) => [[1. 2. 3.]
[4. 5. 6.]]
# 2-D tensor `b`
b = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2]) => [[7. 8.]
[9. 10.]
[11. 12.]]
c = tf.matmul(a, b) => [[58 64]
[139 154]]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant(np.random.rand(2,3))
b = tf.constant(np.random.rand(1,3))
c = tf.matmul(a, b, transpose_b = True)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* a
: 一个Tensor
,数据类型是float
,double
,int32
或者complex64
。
* b
: 一个Tensor
,数据类型和a
相同。
* transpose_a
: 如果该值维True
,那么在矩阵计算之前,先将a
进行转置。
* transpose_b
: 如果该值维True
,那么在矩阵计算之前,先将b
进行转置。
* a_is_sparse
: 如果该值维True
,那么在矩阵计算的时候,将a
当做一个sparse
矩阵考虑。
* b_is_sparse
: 如果该值维True
,那么在矩阵计算的时候,将b
当做一个sparse
矩阵考虑。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和a
相同。
tf.batch_matmul(x, y, adj_x = None, adj_y = None, name = None)
解释:这个函数的作用是将两个张量按批切片进行相乘。
将张量x
和y
进行切片(每个切片就是一个批的元素),然后将对应的x
和y
的每个切片进行相乘,将得到的结果按照原来批的大小进行重新安排。如果我们把adj_x
或者adj_y
设置成True
,在做乘法之前,每个独立的切片可以组成它的共轭(其实相当于转置)。
输入的x
和y
是三维tensor
,或者更高维度的[..., r_x, c_x]
和[..., r_y, c_y]
。
输出tensor
是一个三维的,或者更高维度的[..., r_o, c_o]
,其中:
r_o = c_x if adj_x else r_x
c_o = r_y if adj_y else c_y
计算过程如下:
out[..., :, :] = matrix(x[..., :, :]) * matrix(y[..., :, :])
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant(np.random.rand(2, 2, 3))
b = tf.constant(np.random.rand(3, 3, 1))
c = tf.batch_matmul(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant(np.random.rand(3, 2, 3, 1))
b = tf.constant(np.random.rand(3, 2, 3, 1))
c = tf.batch_matmul(a, b, adj_x = False, adj_y = True )
sess = tf.Session()
print sess.run(c)
print sess.run(tf.shape(c))
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是float32
,float64
,int32
或者complex64
,数据维度是三维的,或者更高维度[..., r_x, c_x]
。
* y
: 一个Tensor
,数据类型和x
相同,数据维度是三维的,或者更高维度[..., r_y, c_y]
。
* adj_x
: 这是一个可选的布尔类型的值,默认情况下是False
。如果我们设置为True
,x
的每个切片将进行转置。
* adj_y
: 这是一个可选的布尔类型的值,默认情况下是False
。如果我们设置为True
,y
的每个切片将进行转置。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和x
相同,数据维度是三维的,或者更高维度[..., r_o, c_o]
。
tf.matrix_determinant(input, name=None)
解释:这个函数的作用是计算n
阶矩阵的行列式。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant(np.random.rand(3, 3))
c = tf.matrix_determinant(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* input
: 一个Tensor
,数据类型是float32
或者float64
,数据维度是[M, M]
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
的标量,数据类型和input
相同。
tf.batch_matrix_determinant(input, name=None)
解释:这个函数的作用是计算每个批(切片)的n
阶矩阵的行列式。
输入tensor
的数据维度必须是[..., M, M]
,其中内部必须是一个二维的方阵,对于所有的子矩阵,输出结果是一个一维的tensor
。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant(np.random.rand(4, 2, 3, 3))
c = tf.batch_matrix_determinant(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* input
: 一个Tensor
,数据类型是float32
或者float64
,数据维度是[..., M, M]
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和input
相同,数据维度是[...]
。
tf.matrix_inverse(input, name=None)
解释:这个函数的作用是计算n
阶矩阵的逆矩阵,并且检查可逆性。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant(np.random.rand(3, 3))
c = tf.matrix_inverse(a)
sess = tf.Session()
print sess.run(c)
d = tf.matmul(a, c)
print sess.run(d)
e = tf.matrix_determinant(d)
print sess.run(e)
sess.close()
输入参数:
* input
: 一个Tensor
,数据类型是float32
或者float64
,数据维度是[M, M]
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和input
相同,数据维度是[M, M]
。
tf.batch_matrix_inverse(input, name=None)
解释:这个函数的作用是计算每个批(切片)的n
阶矩阵的逆矩阵,并且检查可逆性。
输入tensor
的数据类型是[..., M, M]
,其中内部必须是一个二维的方阵,对于每一个子矩阵,输出的矩阵的逆和输入数据有相同的数据维度。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant(np.random.rand(2, 3, 3))
c = tf.batch_matrix_inverse(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* input
: 一个Tensor
,数据类型是float32
或者float64
,数据维度是[..., M, M]
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和input
相同,数据维度是[..., M, M]
。
tf.cholesky(input, name=None)
解释:这个函数的作用是计算n
阶矩阵的Cholesky分解。
输入数据必须是一个对称的正定矩阵,并且这个操作我们只会读入矩阵的下三角部分,不会读取矩阵的上三角部分。
输出结果是经过Cholesky分解之后的一个对角线元素为正数的下三角实矩阵。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant([[2, np.random.rand()], [-2, 5]], tf.float32)
c = tf.cholesky(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* input
: 一个Tensor
,数据类型是float32
或者float64
,数据维度是[M, M]
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和input
相同,数据维度是[M, M]
。
tf.batch_cholesky(input, name=None)
解释:这个函数的作用是计算每个批(切片)的n
阶矩阵的Cholesky分解。
输入tensor
的数据类型是[..., M, M]
,其中内部必须是一个二维的方阵,并且满足Cholesky分解的条件。输出tensor
和输入数据有相同的数据类型,并且每个切片都是经过Cholesky分解之后的值。
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant([[[2, np.random.rand()], [-2, 5]], [[2, np.random.rand()], [-2, 5]]], tf.float32)
c = tf.batch_cholesky(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* input
: 一个Tensor
,数据类型是float32
或者float64
,数据维度是[..., M, M]
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型和input
相同,数据维度是[..., M, M]
。
复数函数
TensorFlow提供了一些复数函数,使得你可以去操作复数,你可以将它们添加到你的图表。
tf.complex(real, imag, name=None)
解释:这个函数的作用是将两个实数转换成一个复数。
这个操作就是去计算复数a + bj
,其中a
来自于输入数据real
,表示实部,b
来自于输入数据imag
,表示虚部。
输入数据real
和imag
必须拥有相同的数据维度。
比如:
# tensor 'real' is [2.25, 3.25]
# tensor `imag` is [4.75, 5.75]
tf.complex(real, imag) ==> [[2.25 + 4.74j], [3.25 + 5.75j]]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant([2.25, 3.25])
b = tf.constant([4.75, 5.75])
c = tf.complex(a, b)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* real
: 一个Tensor
,数据类型是float
。
* imag
: 一个Tensor
,数据类型是float
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型是complex64
。
tf.complex_abs(x, name=None)
解释:这个函数的作用是计算复数的绝对值。
给定一个复数张量x
,这个操作是计算x
中的每个值的绝对值,并且返回一个float
类型的张量。在x
中的所有复数的形式必须是a + bj
的形式,那么绝对值计算公式如下:
比如:
# tensor 'x' is [[-2.25 + 4.75j], [-3.25 + 5.75j]]
tf.complex_abs(x) ==> [5.25594902, 6.60492229]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant([2.25 + 3.25j])
c = tf.complex_abs(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是complex64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型是float32
。
tf.conj(in_, name=None)
解释:这个函数的作用是计算复数的复共轭。
给定一个复数张量in_
,这个操作是计算in_
中的每一个复数的复共轭。在in_
中所有复数的形式必须是a + bj
的形式,其中a
是实数部分,b
是虚数部分。
经过这个操作,复共轭的返回形式是a - bj
。
比如:
# tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.conj(in) ==> [-2.25 - 4.75j, 3.25 - 5.75j]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant([2.25 + 3.25j])
c = tf.conj(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是complex64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型是complex64
。
tf.imag(in_, name=None)
解释:这个函数的作用是返回复数的虚部。
给定一个复数张量in_
,这个操作是返回in_
中的每一个复数的虚部。在in_
中所有复数的形式必须是a + bj
的形式,其中a
是实数部分,b
是虚数部分。
比如:
# tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.imag(in) ==> [4.75, 5.75]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant([2.25 + 3.25j])
c = tf.imag(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是complex64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型是float32
。
tf.real(in_, name=None)
解释:这个函数的作用是返回复数的实部。
给定一个复数张量in_
,这个操作是返回in_
中的每一个复数的实部。在in_
中所有复数的形式必须是a + bj
的形式,其中a
是实数部分,b
是虚数部分。
比如:
# tensor 'in' is [-2.25 + 4.75j, 3.25 + 5.75j]
tf.real(in) ==> [-2.25, 3.25]
使用例子:
#!/usr/bin/env python
# -*- coding: utf-8 -*-
import tensorflow as tf
import numpy as np
a = tf.constant([2.25 + 3.25j])
c = tf.real(a)
sess = tf.Session()
print sess.run(c)
sess.close()
输入参数:
* x
: 一个Tensor
,数据类型是complex64
。
* name
:(可选)为这个操作取一个名字。
输出参数:
* 一个Tensor
,数据类型是float32
。
作者:chen_h
微信号 & QQ:862251340
简书地址:https://www.jianshu.com/p/ce4ee40963c1
CoderPai 是一个专注于算法实战的平台,从基础的算法到人工智能算法都有设计。如果你对算法实战感兴趣,请快快关注我们吧。加入AI实战微信群,AI实战QQ群,ACM算法微信群,ACM算法QQ群。长按或者扫描如下二维码,关注 “CoderPai” 微信号(coderpai)