人工智能资料库:第48辑(20170426)

作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai


今天分享:
(1)利用 scikit-learn 进行文档分类;
(2)训练复杂的神经网络时,强化学习(RL)方法可能是值得的;
(3)12个免费的深度学习课程;
(4)机器学习中的经典的方程,图表和技巧;
(5)SqueezeDet 做物体检测;


1.【博客】Document Classification with scikit-learn

简介:

文档分类是一个很基础的技术,在很多的场景都有使用,比如垃圾邮件分类,垃圾语言检测,情感分析等等。本文主要讲解了如何利用 scikit-learn 来进行文本分类,我们通过制作一个简单的分类器,类似于Gmail的垃圾邮件分类功能。在这篇教程中,我们将构建一个有效的和正确率非常高的分类模型。

原文链接:http://zacstewart.com/2015/04/28/document-classification-with-scikit-learn.html


2.【博客】Reinforcement Learning or Evolutionary Strategies? Nature has a solution: Both.

简介:

几周前,OpenAI 在深度学习社区发表的一篇论文《Evolution Strategies as a Scalable Alternative to Reinforcement Learning》引起了很大的反响。这项工作包含了令人印象深刻的结果,表明在训练复杂的神经网络时,强化学习(RL)方法可能是值得的,它激发了关于强化学习的重要性的辩论。

原文链接:https://chatbotslife.com/reinforcement-learning-or-evolutionary-strategies-nature-has-a-solution-both-8bc80db539b3


3.【课程】Dive into Deep Learning with 12 free online courses

简介:

Creative Applications of Deep Learning with TensorFlow

Neural Networks for Machine Learning

Practical Deep Learning For Coders, Part 1

6.S191: Introduction to Deep Learning

6.S094: Deep Learning for Self-Driving Cars

Deep Learning

Deep Learning for Natural Language Processing

CS224n: Natural Language Processing with Deep Learning

Machine Learning

Deep Learning Summer School 2015

Online Course on Neural Networks

Learn TensorFlow and deep learning, without a Ph.D.

Deep Learning in Python

Deep Learning A-Z™: Hands-On Artificial Neural Networks

Deep Learning Prerequisites: The Numpy Stack in Python

Data Science: Deep Learning in Python

Deep Learning Prerequisites: Linear Regression in Python

Deep Learning Prerequisites: Logistic Regression in Python

Deep Learning: Convolutional Neural Networks in Python

Data Science: Practical Deep Learning in Theano + TensorFlow

Deep Learning: Recurrent Neural Networks in Python

Natural Language Processing with Deep Learning in Python

Unsupervised Deep Learning in Python

Unleash Deep Learning: Begin Visually with Caffe and DIGITS

Deep Learning with TensorFlow

Deep Learning with Python

原文链接:https://medium.freecodecamp.com/dive-into-deep-learning-with-these-23-online-courses-bf247d289cc0


4.【博客】machine learning cheat sheet

简介:

机器学习中的经典的方程,图表和技巧。

原文链接:https://github.com/soulmachine/machine-learning-cheat-sheet/blob/master/machine-learning-cheat-sheet.pdf


5.【博客】SqueezeDet: Deep Learning for Object Detection

简介:

通常,你在计算机视觉和深度学习中看到的示例都是关于分类。那些问题是在问你在图像中看到什么?对象检测又是另一类问题,要求你在图像中识别物体。

本文就是利用 SqueezeDet 模型来讲解这件事。

原文链接:https://mez.github.io/2017/04/21/squeezedet-deep-learning-for-object-detection/


阅读更多

扫码向博主提问

去开通我的Chat快问

coderpai

问题是最好的解答
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/CoderPai/article/details/80317038
文章标签: 人工智能
个人分类: 人工智能
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

人工智能资料库:第48辑(20170426)

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭