作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai
今天分享:
(1)利用 scikit-learn 进行文档分类;
(2)训练复杂的神经网络时,强化学习(RL)方法可能是值得的;
(3)12个免费的深度学习课程;
(4)机器学习中的经典的方程,图表和技巧;
(5)SqueezeDet 做物体检测;
1.【博客】Document Classification with scikit-learn
简介:
文档分类是一个很基础的技术,在很多的场景都有使用,比如垃圾邮件分类,垃圾语言检测,情感分析等等。本文主要讲解了如何利用 scikit-learn 来进行文本分类,我们通过制作一个简单的分类器,类似于Gmail的垃圾邮件分类功能。在这篇教程中,我们将构建一个有效的和正确率非常高的分类模型。
原文链接:http://zacstewart.com/2015/04/28/document-classification-with-scikit-learn.html
2.【博客】Reinforcement Learning or Evolutionary Strategies? Nature has a solution: Both.
简介:
几周前,OpenAI 在深度学习社区发表的一篇论文《Evolution Strategies as a Scalable Alternative to Reinforcement Learning》引起了很大的反响。这项工作包含了令人印象深刻的结果,表明在训练复杂的神经网络时,强化学习(RL)方法可能是值得的,它激发了关于强化学习的重要性的辩论。
3.【课程】Dive into Deep Learning with 12 free online courses
简介:
Creative Applications of Deep Learning with TensorFlow
Neural Networks for Machine Learning
Practical Deep Learning For Coders, Part 1
6.S191: Introduction to Deep Learning
6.S094: Deep Learning for Self-Driving Cars
Deep Learning for Natural Language Processing
CS224n: Natural Language Processing with Deep Learning
Deep Learning Summer School 2015
Online Course on Neural Networks
Learn TensorFlow and deep learning, without a Ph.D.
Deep Learning A-Z™: Hands-On Artificial Neural Networks
Deep Learning Prerequisites: The Numpy Stack in Python
Data Science: Deep Learning in Python
Deep Learning Prerequisites: Linear Regression in Python
Deep Learning Prerequisites: Logistic Regression in Python
Deep Learning: Convolutional Neural Networks in Python
Data Science: Practical Deep Learning in Theano + TensorFlow
Deep Learning: Recurrent Neural Networks in Python
Natural Language Processing with Deep Learning in Python
Unsupervised Deep Learning in Python
Unleash Deep Learning: Begin Visually with Caffe and DIGITS
原文链接:https://medium.freecodecamp.com/dive-into-deep-learning-with-these-23-online-courses-bf247d289cc0
4.【博客】machine learning cheat sheet
简介:
机器学习中的经典的方程,图表和技巧。
5.【博客】SqueezeDet: Deep Learning for Object Detection
简介:
通常,你在计算机视觉和深度学习中看到的示例都是关于分类。那些问题是在问你在图像中看到什么?对象检测又是另一类问题,要求你在图像中识别物体。
本文就是利用 SqueezeDet 模型来讲解这件事。
原文链接:https://mez.github.io/2017/04/21/squeezedet-deep-learning-for-object-detection/