人工智能资料库:第52辑(20170506)

作者:chen_h
微信号 & QQ:862251340
微信公众号:coderpai


今天分享:
(1)语义分割论文列表;
(2)MRI数据集;
(3)利用深度学习实现电影推荐系统;
(4)bi-gram 模型分析;
(5)TensorFlow scan 例子 ;


1.【论文】A list of papers on Semantic Segmentation

简介:

这是一个语义分割列表,并且罗列出来了使用的数据集。这个列表由 Holger Caesar 进行维护。如果你想完善它或者提交错误,请访问 it-caesar.com

原文链接:https://github.com/nightrome/really-awesome-semantic-segmentation


2.【数据集】openMorph

简介:

具有人体结构MRI数据的开放数据库。

原文链接:https://github.com/cMadan/openMorph


3.【博客】movie recommendations with Deep Learning

简介:

本文介绍电影推荐网站的想法来源和应用概念

a. 电影推荐网站:https://movix.ai/
(1) Rating prediction 预测排名
(2) Top N recommendations 推荐用戶N个电影

b. 概念
(1) Matrix Factorization 矩阵分解
(2) Nearest neighbours approach 近邻算法
(3) LSTM 递归神经网络

原文链接:https://medium.com/deep-systems/movix-ai-movie-recommendations-using-deep-learning-5903d6a31607


4.【博客】Language Identification from Texts using Bi-gram model: Python/NLTK

简介:

scan 能让我们在计算图中写循环,并且运行反向传播。当然,我们可以自己显式展开循环,为每个循环迭代创建新的图形节点,但是迭代次数是固定的而不是动态的。这篇文章很好的实验了如何使用 scan 来写入计算图。

原文链接:https://appliedmachinelearning.wordpress.com/2017/04/30/language-identification-from-texts-using-bi-gram-model-pythonnltk/


5.【博客】TensorFlow Scan Examples

简介:

在这篇博文中,我们将从训练数据中训练 bi-gram 模型。一个单位是连续的两个单词组成。一个句子由很多的词和空格组成,我们也将空格当做一个词来处理。具体模型处理请看文章。

原文链接:http://rdipietro.github.io/tensorflow-scan-examples/


阅读更多

扫码向博主提问

coderpai

问题是最好的解答
去开通我的Chat快问
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/CoderPai/article/details/80344386
文章标签: 人工智能
个人分类: 人工智能
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭