(注:该问题答案转自网友李春春的CSDN博客,转载请注明出处)
★问题描述:
最大间隙问题:给定 n 个实数x1,x2,…,xn,求这 n 个数在实轴上相邻 2 个数之间的最大差值。假设对任何实数的下取整函数耗时 O(1),设计解最大间隙问题的线性时间算法。
★算法设计:
对于给定的 n 个实数x1,x2,…,xn,计算它们的最大间隙。
★数据输入:
输入数据由文件名为 input.txt 的文本文件提供。文件的第 1 行有 1 个正整数n。接下来的 1 行中有 n 个实数x1,x2,…,xn。
**★结果输出:**将找到的最大间隙输出到文件 output.txt。
★C++ 代码如下(① 由 Visual Studio 2017 运行成功,注意可能运行出错,非代码问题,根据编译器错误提示修改细节;② input.txt 文件需要自己手动建立在工作文件夹):
#include"stdafx.h"
#include<iostream>
#define FILENAMELENGTH 50
//声明函数
template<class T>
int indexofmin(int n, T *x);
template<class T>
int indexofmax(int n, T *x);
//类
class CMaxGap
{
public:
int m_nCount; //数据的个数
double m_dblMaxGap; //最大间隙
double *m_dblNumber;//存放数据的数组
CMaxGap(const char *filename);
~CMaxGap();
double GetMaxGap(int n, double *x);
void Display();
};
//读入数据
CMaxGap::CMaxGap(const char *filename)
{
FILE *fp = fopen(filename, "r");
if (fp == NULL)
{
printf("无法打开该文件,可能不存在或位置不对! \n");
exit(0);
}
//读入数据个数
fscanf(fp, "%d", &m_nCount);
m_dblNumber = new double[m_nCount];
//读入每个具体的数据
for (int i = 0;i<m_nCount;i++)
fscanf(fp, "%lf", &m_dblNumber[i]);
m_dblMaxGap = 0;
fclose(fp);
}
CMaxGap::~CMaxGap()
{
delete[] m_dblNumber;
m_dblNumber = NULL;
}
//获取n个数据的最大间隙,存放在以x为开始地址的单元中,数据下标为0,1,...,n-1
double CMaxGap::GetMaxGap(int n, double *x)
{
//找到最大最小数据,考虑到浮点型数据在传递过程中可能会有微小的变化
//故采取取其下标的方式,在直接读取
int minindex = indexofmin(n, x);
int maxindex = indexofmax(n, x);
double minx = x[minindex];
double maxx = x[maxindex];
//用n-2个点等分区间[minx,maxx],产生n-1个桶,桶编号1,2,...,n-2,n-1
//且桶i的上界和桶i+1的下届相同
double dblAvrGap = (maxx - minx) / (n - 1); //每个等分区间大小,即每个桶的大小
int *count = new int[n]; //实际分到每个桶的数据个数
double *low = new double[n]; //实际分到每个桶的最小数据
double *high = new double[n]; //实际分到每个桶的最大数据
//初始化桶
for (int i = 0;i<n;i++)
{
count[i] = 0;
low[i] = maxx;
high[i] = minx;
}
int index; //桶编号
//将n个数放入n-1个桶中
for (int i = 0;i<n;i++)
{
//按如下规则将x[i]分配到某个桶(编号index)中
//若x[i]=minx,则被分到第1个桶中(minx即为桶1的下界)
//若x[i]=桶j的下界(也是桶j-1的上界),则按如下公式被分到桶j中(j>=1)
index = int((x[i] - minx) / dblAvrGap) + 1;
//若x[i]=maxx,则被分到桶n中(max为桶n的下界桶n-1的上界)
// 但没有桶n,此时可人为将其移入桶n-1中,或者再加一个桶
//该步操作不影响下面的求最大间隙
if (index == n)
index--;
count[index]++;
//调整分到该桶的最大最小数据
if (x[i]<low[index])
low[index] = x[i];
if (x[i]>high[index])
high[index] = x[i];
}
/*
除最大最小数据maxx和minx以外的n-2个数据被放入n-1个桶中
由抽屉原理可知至少有一个桶是空的
又因每个桶的大小相同,所以最大间隙不会在同一桶中出现
一定是某个桶的上界(dblHigh)和其后某个桶的下界(dblLow)之间隙
注意:该两桶之间的桶(即编号在该两桶编号之间的桶)一定是空桶
即最大间隙在桶i的上界和桶j的下界之间产生(j>=i+1)
*/
double dblMaxGap = 0, dblHigh = high[1], dblTempGap;
for (int i = 2;i<n;i++)
{
if (count[i]) //该桶非空才计算
{
dblTempGap = low[i] - dblHigh;
if (dblMaxGap<dblTempGap)
dblMaxGap = dblTempGap;
dblHigh = high[i];
}
}
//释放
delete[] count;
count = NULL;
delete[] low;
low = NULL;
delete[] high;
high = NULL;
m_dblMaxGap = dblMaxGap;
return dblMaxGap;
}
void CMaxGap::Display()
{
printf("该文件中一共存在 %d 个数: ", m_nCount);
for (int i = 0;i<m_nCount;i++)
{
printf("%.2f ", m_dblNumber[i]);
}
printf("\n");
printf("最大间隙为: %.2f ", m_dblMaxGap);
printf("\n");
printf("----------------------------------------------------\n");
}
//求数组中最小数据的下标
template<class T>
int indexofmin(int n, T *x)
{
int index;
T temp = x[0];
for (int i = 1;i<n;i++)
{
if (x[i]<temp)
{
temp = x[i];
index = i;
}
}
return index;
}
//求数组中最大数据的下标
template<class T>
int indexofmax(int n, T *x)
{
int index;
T temp = x[0];
for (int i = 1;i<n;i++)
{
if (x[i]>temp)
{
temp = x[i];
index = i;
}
}
return index;
}
//显示菜单
void show_menu()
{
printf("测试说明:\n");
printf("①按 i or I : 输入要测试文件的名字 \n");
printf("②按 q or Q 退出 \n");
printf("----------------------------------------------------\n");
printf("Please input the letter:");
}
void main()
{
char sinput[10];
char sfilename[FILENAMELENGTH];
show_menu();
scanf("%s", sinput);
while (_stricmp(sinput, "q") != 0)
{
if (_stricmp(sinput, "i") == 0)
{
printf("请输入文件名:");
scanf("%s", sfilename);
//求文件中数据的最大间隙
CMaxGap gap(sfilename);
double dblMaxGap = gap.GetMaxGap(gap.m_nCount, gap.m_dblNumber);
gap.Display();
}
//输入命令
printf("Please input the letter:");
scanf("%s", sinput);
}
}