【Motion Forecasting】【摘要阅读】ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation

ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation

这篇文章发布于2023年的ICCV,第一作者来自于KUIS AI Center。

Abstract

想要在复杂的交通场景当中完成所有代理的轨迹预测,需要模型能够对场景中所有的代理进行可靠且高效的轨迹预测。然而,现有的轨迹预测模型或是效率较低,或是精度欠佳。

为了解决上述挑战,本文提出了ADAPT,这是一种基于动态权重学习(dynamic weight learning)的新颖方法,它能够完成驾驶场景中所有代理的联合轨迹预测。本文方法的性能在Argoverse和INTERACTION数据集上超过了当年的SOTA方法,并且本文方法的计算开销与现有方法相比较少。
在这里插入图片描述
【从上述的Figure 1中的比较可以看到,本文提出的ADAPT在模型参数以及推理速度上确实有着较好的优势。】

作者认为,本文方法所取得的较好性能归功于:

  1. 模型当中使用了一种adaptive head,它可以在不增加计算开销的前提下提高模型的性能;
  2. 模型在对轨迹进行预测时,使用了以终点作为条件的轨迹预测方法(endpoint-conditioned prediction),并使用了梯度停止策略(gradient stopping)。

在这里插入图片描述
【参考上述论文当中给出的Overview,在场景编码器阶段与LaneGCN非常相似,之后使用了两阶段的轨迹解码,首先对轨迹的终点进行预测,再对整条轨迹进行补全,是非常标准的goal-based trajectory decoder。】

在本文的分析环节,表明ADAPT在对每一个代理的轨迹进行预测时,都可以进行自适应的预测,

本文方法的代码实现是开源的,详情可以参考原文当中给出的链接。

【精简版:从本文方法要解决的问题过于宽泛,可以归纳为提高模型精度的同时降低模型的计算开销,并没有解决自动驾驶运动预测任务当中的某个带有任务特点的问题,解决的手段是使用动态权重学习的方法,通过动态的权重来对代理的未来轨迹进行自适应的预测。此外,在对轨迹进行预测时,使用了以终点作为条件的轨迹预测方法,并使用了梯度停止。】

Conclusion and Future Work

本文方法提出了一种新颖且高效的自动驾驶轨迹预测框架,可以通过更改终点预测器的设置来完成单一代理(marginal)轨迹预测以及多代理轨迹预测两项任务。

本文方法提出了一种动态权重学习策略,用于在同一个场景参考坐标系下对多个代理的终点进行准确的预测。作者表明,本文方法在单一代理轨迹预测任务以及多代理轨迹预测任务上均取得了SOTA水准的结果,并且模型的推理开销和效率较高。

针对未来工作而言,一个较为有趣的方向是将随机隐变量(stochastic latent variables)与本文现有的终点预测器相结合,来提高模型对未来轨迹预测的不确定性,比如分别使用隐变量来对短期和长期的目标进行预测。

另一个可行的方向是对场景当中的时间动态进行学习,从而在不限制分解注意力假设的前提下更好地理解代理与代理之间的交互关系,并提高模型的效率。与大多数现有的轨迹预测方法类似,假定代理在高精地图当中的位置已知。

在未来的工作中,作者将会对不完全感知情况下的代理未来轨迹预测所产生的影像进行研究,以部署上述解决方案。

【总结:这篇文章我还没有全文通读,但是从摘要、结论以及原文给出的几张图来看,这项工作确实有深入探讨的价值,后续我会精读一次原文,如此中有值得分享的感受将进一步更新】

  • 20
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值