【实操GPT-SoVits】声音克隆模型图文版教程

  1. 项目github地址:https://github.com/RVC-Boss/GPT-SoVITS.git
  2. 官方教程:https://www.yuque.com/baicaigongchang1145haoyuangong/ib3g1e/tkemqe8vzhadfpeu
  3. 本文旨在迅速实操GPT-SoVits项目,不阐述技术原理(后期如果有时间研究,争取写个学习笔记)。
  4. windows用户可直接使用整合包。
  5. 感谢书生·浦语提供的服务器资源。

一、准备工作

下载源项目 

git clone https://github.com/RVC-Boss/GPT-SoVITS.git

安装依赖 

conda create -n GPTSoVits python=3.9
conda activate GPTSoVits
pip install -r requirements.txt

下载预训练模型 

https://huggingface.co/lj1995/GPT-SoVITS/tree/main 

或者 

iCloud Drive - Apple iCloud 

启动webUI页面 

python webui.py

二、实操-克隆林黛玉

我使用的语音素材是干声,这里就不使用UVR5分离背景音处理。直接进行语音切片,下次有时间写个补充(急着下班回家)。 

关于原素材的来源:剪映剪辑后导出音频。 

2.1 素材切片

在源码目录内新建文件夹,分别用于存放原素材和切片后的素材。 

配置文件夹后,点击音频切割 

切割结束,我们看下文件夹 

 

2.2 切片素材降噪

对切片的素材进行语音降噪。直接点击"启动语音降噪器"进行处理。

 

提示降噪完成。我们去output目录下看下输出。 

2.3 批量ASR

启动批量ASR,目录设置为刚刚批量片段降噪处理后的文件夹。 

任务完成,我们去目录里看下生成了什么 

生成了一个.list文件,精确度还是蛮高的。 

2.4 语音转文本校对

启动在9871端口,我们点击过去。 

对左侧的text进行大致的校对,保证语音和文本对应(删除明显乱码等)。太短的音频可以选择删除,或者与其他音频片段合并。最终保存文件。

 

 

2.5 训练数据格式化

设置model name,以及两个文件夹后依次点击3个按钮,或者点击"一键"三连按钮。 

提示进程结束无报错后,我们看下logs文件夹,如果某个文件夹是空的,说明格式化失败了,需要重新调整素材再次处理。 

2.6 微调

我的原素材时长较短,这里就使用默认参数。素材较长可以增加训练轮次。 

依次进行"SoVITS traning"和"GPT training",等待完成。

 

训练完成后,我们可以在以下2个文件夹(之前选择的v2版本:SoVITS_weights_v2、GPT_weights_v2)内看到保存的模型。

 

2.7 推理

切换到"inference",先刷新模型列表,2个模型都选择数字最大的那个。勾选"启用并行"。最后点击"open tts inference webUI"。 

服务启动后我们会看到如下页面。

 

辅助参考音频可以不上传。调整"推理设置"至趋近于自己想要的角色语音效果。

 

三、推理结果展示

这花盆之中,置有一株青菜,倒也别致。你瞧它,叶片儿青翠欲滴,宛若碧玉雕琢,倒有一丝不染尘埃之清逸。那菜茎亭亭玉立,于这方寸之地,亦能展现出勃勃生机,恰如那闺阁中的女子,虽身处深宅,却难掩其清新脱俗之气。只是不知,它在这花盆之中,是否也会如我一般在夜深人静之时,暗自神伤,思念起那广袤田野的自由来呢? 

随机掉落卡片+语音播放

 

四、api调用

运行api_v2.py成功后,接口文档如下图所示。/tts方法就是我们需要调用。 

 

 

### GPT-SoVITS声音克隆工具概述 GPT-SoVITS是一个用于创建高度逼真语音合成模型的强大工具,能够精确复制特定个体的声音特征[^1]。 ### 安装环境配置 为了顺利运行GPT-SoVITS项目,需先搭建合适的开发环境。推荐使用Anaconda来管理Python本及相关依赖库: ```bash conda create -n sovits python=3.8 conda activate sovits pip install torch==1.9.0 torchaudio===0.9.0 -f https://download.pytorch.org/whl/torch_stable.html pip install -r requirements.txt ``` 上述命令会安装PyTorch以及其它必要的软件包,确保所有组件兼容并正常工作。 ### 数据集准备 高质量的数据对于训练效果至关重要。应收集目标人物清晰无背景噪音的音频片段作为样本数据源。每条记录建议长度控制在几秒到十几秒之间,并保持一致的采样率(通常为22kHz)。这些素材将被用来提取声纹特征,进而构建个性化的发声模型。 ### 训练过程简介 完成前期准备工作之后就可以启动模型训练流程了。具体操作如下所示: ```python from utils import preprocess_dataset, train_model # 对原始音频文件执行预处理操作 preprocess_dataset('path/to/audio/files') # 开始正式训练阶段 train_model(config='config.json', checkpoint_dir='./checkpoints') ``` 此部分涉及复杂的算法运算,在GPU支持下可以显著加快收敛速度。经过若干轮迭代优化后即可获得初步可用的结果。 ### 测试与应用实例 当模型训练完毕并通过验证测试后便能投入实际应用场景当中去了。下面给出一段简单的调用代码供参考: ```python import os from text_to_speech import TTSModel model_path = './checkpoints/best.pth' output_wav = 'generated_audio.wav' tts = TTSModel(model_path=model_path) audio_data = tts.synthesize(text="这是一句测试语句") os.write(output_wav, audio_data) print(f"已成功生成音频文件 {output_wav}") ``` 这段脚本展示了如何加载已经训练好的权重参数并将指定的文字转换成对应的语音输出。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值